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1A.  STATEMENT OF PROBLEM STUDIED. 

Research on nanoscale and mesoscopic electronic and 
optoelectronic structures has focused extensively on carrier- 
phonon interactions.  However, until recently this research has 
been based on the assumption that both optical and acoustic 
phonons may be treated as bulk phonons without regard to 
dimensional confinement effects.  In the past few years, this 
situation has been improved as a result of numerous 
investigations of the properties and interactions of optical 
phonons in nanoscale electronic and optoelectronic structures 
confined in one or more spatial dimensions.1  In spite of 
considerable experimental evidence on the importance of 
dimensional confinement in determining the properties of acoustic 
phonons, 2"9 there have been very few attempts to model confined 
acoustic phonons in electronic and optoelectronic structures 
having nanometer characteristic dimensions (i.e., nanoscale) and 
wavelike electron (i.e., mesoscopic) properties.  In particular, 
selected acoustic phonons in nanoscale structures have been 
analyzed for the cases of superlattices, free-standing slabs, 
free-standing cylinders, and guantum wires with rectangular cross 
sections.  In this research we have modeled numerous interactions 
of confined phonons in nanostructures.  These include: 
piezoelectric scattering in cylindrical guantum wires; 
generalized piezoelectric scattering rate for elections in a two- 
dimensional election gas; Gamma-X transitions driven by interface 
phonons; interface optical modes in cylindrical guantum wires; 
microscopic model for election-optical-phonon interactions in 
guantum wells; optical phonons in guantum dots; electron- 
acoustic-phonon scattering in both rectangular and cylindrical 
guantum wires; and acoustic modes in guantum wires and 

IB.  SUMMARY OF MOST IMPORTANT RESULTS 

In this research effort we have achieved a number of results 
that provide for the subseguent design of ultrafast 
nanoelectronic and opt-electronic devices. Among these results 
are: piezoelectric scattering rates for carriers in a cylindrical 
guantum wire; the design of metal-encapsulated guantum wires for 
enhanced charge transport; the generalized piezoelectric 
scattering rate for elections in a two-dimensional election gas; 
direct-indirect transition rates in short-period superlattices 
due to phonon-assisted transitions; the normalization of 
interface optical phonon modes in cylindrical guantum wires with 
semiconductor-semiconductor and metal-semiconductor boundary 
conditions; a microscopic model for election-optical-phonon 
interactions in guantum wells; characteristics of bottleneck 
effects due to confined phonons in guantum dots; a model for 
deformation potential interactions in rectangular guantum wires; 



a model for election-acoustic-phonon scattering rates in 
rectangular quantum wires; quantized acoustic phonon modes in 
quantum wires and quantum dots; election-acoustic-phonon 
scattering rates in cylindrical quantum wires; methods for 
tailoring acoustic phonon modes in mesoscopic devices; a model 
for optical-phonon lifetimes in gallium arsenide; a model for 
elastic vibrations of microtubules in a fluid; a model for 
interface phonons in spherical gallium-arsenide—aluminum- 
gallium-arsenide quantum dots; and a general prescription for and 
derivation of acoustic phonon quantization in buried waveguides 
and resonators. 

These results are essential results needed for an 
understanding of deformation potential, piezoelectric and 
Fröhlich scattering in nanoscale electronic and optoelectronic 
devices.  These results are of special significance since the 
identified phonon-driven interactions are derived with both 
election and phonon confinement taken into account.  In summary, 
our results containing many of the pioneering findings on 
carrier-phonon interactions for device geometries where phonon 
confinement modifies the phonons from the usual bulk phonons. 
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Confined acoustic modes are derived for a free-standing nanometer-scale cylindrical polar semicon- 
ductor quantum wire. The piezoelectric scattering Hamihonian is *fH'lf**<< for the interaction of 
charge carriers with the lowest-order azimuthally symmetric torsional modes in such nanometer-scale 
quantum wires. 

Many proposed applications of mesoscopic electronic 
structures involve carrier transport at low temperatures 
and low carrier energies; frequently, the regime of in- 
terest is one where dimensional confinement modifies the 
phase space substantially. In this low-temperature, low- 
energy regime,1 ~* acoustic phonons play an enhanced 
role in carrier scattering and may dominate over the 
scattering of carriers by optical phonons. Furthermore, 
in nanometer-scale structures it is possible that phase- 
space restrictions may weaken or forbid optical-phonon 
scattering processes that would normally dominate.in 
bulk structures. In recent years, there has been extensive 
literature on the role of dimensional confinement in 
modifying optical-phonon modes and their interactions 
with charge carriers (see, for example, Refs. 7-11 and the 
numerous references therein). However, there are rela- 
tively few treatments dealing with the role of dimensional 
confinement in modifying acoustic-phonon modes and 
their interactions with charge carriers.2-4 While there is 
extensive literature on the theory of acoustic modes in 
conventional waveguides, resonators and related struc- 
tures,3 no efforts have been reported to formulate a 
theory of acoustic phonons in nanometer-scale structures 
where both phonon confinement and a quantum- 
mechanical treatment of phonon normalization are both 
essential; Constantinou has, however, discussed the un- 
normalized acoustic-phonon modes in cylindrical polar 
semiconductor quantum wires.u 

In this paper, the general piezoelectric polarization 
vector is derived in terms of the acoustic-phonon mode 
displacements in free-standing cylindrical quantum wires 
fabricated of zinc-blende, polar semiconductors. By tak- 
ing an approach analogous to the dielectric continuum 
theory of confined optical phonons, the proper quantum- 
mechanical technique of normalizing such acoustic- 
phonon modes is illustrated and the piezoelectric scatter- 
ing Hamiltonian is calculated for the interaction of 
charge carriers with the lowest-order azimuthally sym- 
metric torsional modes in nanometer-scale quantum wires 
of both infinite and finite length (i.e., quantum dots or 
boxes). 

The piezoelectric tensor relating the piezoelectric po- 
larization vector and the acoustic strain tensor may be 
expressed in matrix notation9 for the case of a zinc-blende 
crystal in rectangular coordinates as 

0 0 0 (<4 0 0 

0 0 0 0 ez4 0 

0 0 0   0    0   ext 

The piezoelectrically induced electric polarization vector 
P is given in terms of e*by the matrix equation, 

P=eS , 

where P is a three-component vector, 

P= Pi 

Pi 

and 5 is the six-component strain vector with com- 
ponents, s 

—    _ 1  3»r 

S i — SAA — 
l_ 

ia r      r d> 

S,«S,.--f- 
1  *»i 

ia dz  ' 

*    tot 

a», , i at 'i =2S, 
a* " r a> 

10) 

3or     dvx 

"a7+"a7 ~2S„, 

S6=2S,4=-r- 
*       10) 

1 d»,     dv*     v4 

r 3*  '   3i r r 

4* ' 

=2S, ¥ ' 

where v is the velocity associated with the acoustic- 
phonon displacement u and a is the harmonic frequency 
assumed for the phonon field; that is, vs/am. To cast e" 
into a form suitable for a cylindrical quantum wire, it is 
necessary to express Fin a more general form where the 
coordinate axes are rotated with respect to the principal 
axes of the crystal Upon applying the rotation transfor- 
mation matrices of Auld5 to the case of rotation by an an- 
gle ^ about the z axis ([100] axis), 
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0 0 0 ex4(co$V-sin2*>     fe^cosdsin* 0 
0 0 0    -2ex4eoi4äa4   «WcosV-sinty 0 

2eltcos4>sia4  -^cosdVsin*» 0 0 0 «^(coaV-sin2^) 

With the generalized piezoelectric matrix, it follows that 

/»,=2«x4(cos2^-sinV)S^+4el4cos^siii^fI , 

J>2~-'««x4«»*sm^+2«,4(cc4V-sinV)S„ . 

Pi=2extcos43in4Sn-2ex4eo343m4SH 

+2ex4(cos2«>-sin2*)S„. 

As discussed by Vogl," the k component of the 
piezoelectric potential may be simplified for a cubic ma- 
terial as 

K €Q 

where k is the acoustic-phonon wave vector and e0 is the 
dielectric constant. The piezodectrically induced electric 
polarization vector Pk is given directly by e'S for the k 
mode as discussed previously. Then, the interaction 
Hamiltonian for piezoelectric scattering may be written 
as 

*»--^2<««»Vr>[a»+at_k]+c.c.), 

where N is the number of unit cells, e is the unit charge, 
and ak (a _k) is the annihilation (creation) operator. 

The characteristic modes for acoustic phonons in an 
infinitely long free-standing cylinder have been obtained 
previously1 by imposing the boundary conditions of van- 
ishing stress components on the free surface of the 
cylinder at r=a. The general solutions with these 
boundary conditions are given in terms of Beste! func- 
tions and the phonon wave vector in the confining direc- 
tion is discretized by a dispersion relation. In this work, 
we will concentrate on the lowest-order azimuthally sym- 
metric torsional mode since hs simple analytical solution 
permits us to develop a quantization prescription that has 
general applicability to acoustic-phonon modes. The 
characteristic velocity field of this mode is given as 

-ita/Y, 

where P,=(c44/p)l/2 and v is a normalization constant 
to be determined. For this mode, v, and ez vanish along 
with kr and k4 (i.e., kt~k~t»/V,). For the case of a 
cylinder of finite length (i.e., quantum dot), the velocity 
field of the corresponding mode may be obtained by re- 
quiring the z*t component of the stress to vanish at the 
ends of the cylinder at z=0 and z=L. Hence, the veloci- 
ty field of the lowest-order azimuthally symmetric tor- 
sional mode for a cylinder of length L may be written as 

„(dot) — yrcos vir 

where w/L ^o/V, and y' is a normalization constant. 
The normalization of the acoustic-phonon modes can 

be obtained by considering the average displacement en- 
ergy of the phonon field. Since the acoustic-phonon dis- 
placement is written in this work as 

u<*>=-^2(*<r>[«r+a!.kJ+c.c.), 

the quantity u^r) must be normalized to */2Mo, where 
M is the mass for a unit celL For a free-standing quan- 
tum dot where the acoustic mode vanishes outside of the 
quantum dot, this normalization condition becomes 

1 
va *LJo fa I?d+!lr *<*•*' 2Mo 

Here, a and L are the radius and the length of the quan- 
tum dot, respectively, as mentioned before. For the 
lowest-order azimuthally symmetric torsional mode, it 
then follows that the characteristic mode for displace- 
ment is given as 

.(dot). 
2Mo 

1/2 
2 
—rcos a 

For the quantum wire of infinite length, k, is a good 
quantum number. Accordingly, die normalization condi- 
tion is 

wo 

hence. 

V5    -im/r. .(«in) 
2J#« 

These examples demonstrate the general method for nor- 
malizing the acoustic-phonon modes, Le, e^r) times its 
complex conjugate when integrated over all space and di- 
vided by the volume is equal to */2Jf«a, This approach 
is analogous to the dielectric continuum theory of 
confined optical phonons,7 and may be used to normalize 
other acoustic-phonon modes in semiconductor nano- 
structures. In particular, all of the acoustic field solu- 
tions known in the literature of classical acoustic fields 
may be normalized by this relation to obtain the 
quantum-mechanical modes and the interaction Hamil- 
tonians for piezoelectric scattering in nanostructures. 

In conclusion, the general piezodectrically induced 
electric polarization vector has been derived in terms of 
the acoustic-phonon mode displacement amplitude. The 
procedure for normalizing the acoustic modes has betn 
(iemonstratedbynonnalizingtbetowest-orderazmiuthal- 
ly symmetric torsional modes in cylindrical quantum 
wires and quantum'dots. These """—Km! modes are 
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used to develop an interaction Hamiltonian for piezoelec- 
tric scattering when the acoustic-phonon modes are 
confined dimensionally. 
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[57] ABSTRACT 

A polar semiconductor quantum wire for use in elec- 
tronic and optoelectronic devices. The polar semicon- 
ductor quantum wire is either completely or partially 
encapsulated in metal to reduce the strength of the 
scattering potential associated with interface optical 
phonons normally established at the lateral boundaries 
of polar semiconductor quantum wires. Metal alone or 
metal employed in conjunction with modulation doping 
enhances the transport of charge carriers within the 
polar semiconductor quantum wire. 
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.— - _                   Stroms. As recently demonstrated by M. A. Stroscio, G. 
METAL-ENCAPSULATED QUANTUM WIRE FOR J. lafrate, K. W. Kim, M. A. Littlejohn, H. Goronkin 

ENHANCED CHARGE TRANSPORT and G. N. Maracas in Applied Physics Letten. 59, 1093, 
rtnvcDMUEUTivrrriiceT ,991, «"«frce-phonon scattering is a major contributor 
uuvtKiNMtNT INTEREST 5  to carrier scattering in superlattices with structure di- 

The invention described herein may be manufac- mensions of about 150 Angstroms or less. Experimental 
tured, used, and licensed by or for the Government of evidence for the enhancement of carrier-interface-pho- 
the United States of America for governmental pur- »on scattering as quantum well dimensions are reduced 
poses without the payment to us of any royalty thereon. has been reported by K. T. Tsen, D. S. Smith, S. C. Y. 

BACicnsninsm nr THC iMvcxmnv ,0 Tsen> N- s- Kumar, and H. Morkoc in the Journal of BACKGROUND OF THE INVENTION AppUtd physic^ 70 4,g) 199J j^ „^^ ^^ 
1. Field of the Invention carrier-interface-phonon  scattering  for confinement 
This invention relates to the field of electronic and      dimensions of less than roughly 100 Angstroms is unde- 

opto-electronic devices that rely upon quantum-wire sirable since it reduces carrier mobility. Recent progress 
structures for charge transport between device compo- 1S in the area of epitaxially-matcbed, metal to semiconduc- 
nents as well as for charge transport within active wire- tor interfaces in quantum-weU devices has been made. J. 
like elements of device components. p. Harbison, T. Sands, N. Tabattbaie, W. K. Chan. L. 

2. Description of the Prior Art j. Florez, and V. G. Kermidas have reported on struc- 
As ongmally proposed by H. Sakaki in the Japanese tures containing such metal-semiconductor interfaces in 

Journal of Applied Physics, 19.L735,1980, the predicted 20 Applied Physics Utters, 53,1717.19U und ialht Journal 
high mobilities of quasi-one-dimensionalI wire-like re- ofCrustal Growth. 95, 425. 1989. Additional papers re- 
gions of semiconducting material underlie many pro- p^g such results m A. oivarclh, J. Caulet, B Guer- 
posed quantum-wire system concepts Such a system      ^ f. Balhnit R   Guerin( A   Poudoulec- „d A 

Sf»r£tJ^T;W1Ttr?yJ 
6TT^Aby^ ,< Regrenyinthe/0«n,fl/c/Cn«/fl/G«,H-rt. 95,427. 1989 

Sf 1989 E^^ Ä? /J??      Ph*,cs-2*' 2$ and N. Tabatabaie, T. Sands, J. P. Harbison. H. L. Gil- L314, 1989. Enhanced earner mobility is achieved in _u-j.f „A v ■- v'     iA.S\2 dw.mU.i DL _•   r ..     « 
the subject quantum-wire array by engineering the fgf ?"d

R
V-G> Kemudas ^PP^ ^ysics Letters, 53. 

mimbands of the array so that longitudinal-optical (LO) 
phonon transitions are forbidden. As a second example SUMMARY OF THE INVENTION 
of the utility of the semiconductor quantum wire is 30     _      ..       , .   . 
found in S. Luryi and F. Capasso, Applied Physics Let- . °ne object of the ,nvent,on * t0 Prov,ae » »eans to 
re/s. 47, 1347, 1985, in which a novel three-terminal »P»*« «mer transport in quantum wires. A second 
resonant-tunneling structure is based on resonant tun- cb^ect of the jnvent,on " to eliminate o reduce interface 
neling of a two^limensional electron gas into a gated Phon°n modes in quantum wires through the introduc- 
one-dimensional quantum wire to produce a negative 35 üon of metal-semiconductor heterojunctions at the lat- 
transconductance. The experimental realization of such era! boundaries of the quantum wire. A third object of 
a device would portend applications for low-power the mvent«on is to eliminate or reduce interface phonon 
logic circuits. Quantum wire arrays have also been »nodes tn quantum wires by combining partial encapsu- 
considered as potential low-current-threshold semicon- ,*tion of tne quantum wire in metal with modulation 
ductor lasers; in fact, there have been indications of 40 doping of the quantum wire. Another object of the 
strong optical anisotropy in such quantum-wire arrays invention is to provide quantum-wire cross sections of 
as reported by M. Tsuchiya, J. M. Gaines, R. H. Yan, R. varying shapes, i.e., rectangular, circular, or arbitrary 
J. Simes, P. O. Holtz, L. A„ Coldren. and P. M. Petrofi", shapes. A still further object of the invention is to pro- 
Physical Revie*' Letters. 62, 466, 1989. Other efforts on **& quantum-wire cross sections that vary along the 
the fabrication and characterization of quantum-wire 45 length of the quantum wire. 
structures have been reported by M. A. Reed, J. N. BBTPPnp«rRTi»Tir.Mn*r nsiwtNrc 
Randall, R. J. Aggarwal. R. J. Matyi, T. M. Moore, and BRIEF DESCRIPT*ON OF DRAWINGS 
A. E. Wetsel, Physical Review Letters, 60, 535, 1988 in HG. I is a pictorial view of a rectangular quantum 
connection with quantum-coupled electron device ar- w*1* encapsulated in metal. 
chitectures and by M. Watt, C. M. Sotomayer Torres, 50 PIC. 2 depicts a cross section of the quantum wire 
H. E. G. Arnot, and S. P. Beaumont, Semiconductor depicted in FIG. 1 along line IA—IA. 
Science and Technology, 285, 1990. FIG. 3 is a pictorial view of a cross section of an 

Recently, however, theoretical studies of the interac- arbitrarily-dimensioned quantum wire, 
don between LO phonons and carriers in polar-semi- FIG. 4 is a pictorial view of a cross section of a circu- 
conductor quantum wires, such as M. A. Stroscio, Phys- 55 lar quantum wire. 
ica! Review. B40,6428,1989, have revealed the presence FIG. 5(a) is a pictorial view of a rectangular quantum 
of discrete LO phonon modes similar to those identified wire encapsulated with metal on three sides and with a 
earner for polar-semiconductor quantum wells as dis- vacuum on its upper lateral surface, 
cussed recently by N. Mori and T. Ando in Physical FIG. 5b) is a pictorial view of a rectangular quantum 
Review, B40,6175,1989. As for quantum wells, interface 60 wire encapsulated with metal on three sides and with a 
LO phonons are established at the semiconductor-semi- layered semiconductor structure on its upper lateral 
conductor boundaries of quantum wires as described by surface; 
K. W. Kim, M. A. Stroscio. A. Bhatt, R. Mickevicius FIG. 6(a) is a pictorial view of the structure of FIG. 
and V. V. Mitin in the Journal of Applied Physics, 70, 5(a) where the rectangular quantum wire is replaced 
319,1991 where interface-phonon scattering effects are 65 with a quantum wire of arbitrary cross section; 
demonstrated to be a major source of scattering for FIG. 6(6) is a pictorial view of illustrates the struc- 
electrons confined in the extreme quantum limit for tureofFIG. 5(d) where the rectangular quantum wire is 
wires with lateral dimensions less than about 40 Ang- replaced with a quantum wire of arbitrary cross section. 
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DETAILED DESCRIPTION OF THE tiaL Conse<'uently unwanted inelastic scattering due to 
PREFERRED EMBODIMENT ^ mterface L0 modes, which dominates for small 

A,.„„„I;—._ .v  •                     . » (< 100 Angstroms) dimensional scales, is reduced or 
-iSf   f8 ^"^"there is further provided eliminated by the metal encapsulation depicted in 
a region of metal encapsulation around the lateral sur- 5 FIGS. 1 through 4 
SSSL?^* C^8e ^P0.""1« ^T11"11 **«• Such Enhanced carrier mobüity can be realized with less 
SEfw T      f «P^uon are shown in FIGS. 1 than complete encapsulation of the quantum wire. The 
through 4. To enhance high-mobdity transport in the long-range interface LO phonon potential will also be 
quantum wire it is desirable to have uniform and smooth reduced significantly by partial metal encapsulation of 
metal-semiconductor interfaces. In FIG. 1, a rectangu- 10 quantum wires as depicted in FIGS. 5 and 6 In FIG 5 
hr quantumi wire 5 is encapsulated on all lateral surfaces a polar semiconductor quantum wire 10 is shown encapl 
by a metal 4. The ends of the quantum wire would be sulated in metal 11 on three of its lateral surfaces. The 
tree of metal to a degree sufficient to allow entry and remaining lateral surface of the quantum wire 10 is 
exit points for current J. The rectangular quantum wire exposed to a vacuum 12. 
has a fixed length 1. height 2, and width 3. In FIG. 1 the 15     In all of the embodiments discussed above, carriers 
current J is depicted traveling along the x axis of the may be depleted from the semiconductor near the met- 
q"mr?m,wire:                          ,t al-semiconductor interface. The extent of depletion of 

tito. z depicts a cross section of the quantum wire in minority and majority carriers will depend upon the 
«Si.    , g if6 ^7^' *howin8 ««PKcal'y that properties of the bulk metal and semiconductor as well 
each lateral surface of the quantum wire 5 is in contact 20 as on the equilibrium established at the metal-semicon- 
witn metal 4. FIG. 3 depicts a cross section of quantum ductor interface. To enhance the carrier confinement 
wire having an arbitrary cross section 6 with each lat- density in the quantum wires of FIG. 5(a), the vacuum 
eral surface of the quantum wire 6 in contact with metal region bounding the top lateral surface of the quantum 
7. Similarly, FIG. 4 depicts a cross section of quantum wires may be replaced by a layered semiconductor 
wire havuig a circular cross section 8 with each lateral 25 structure. In FIG. S(b) the polar semiconductor quan- 
surface of the quantum wire 8 in contact with metal 9. turn wire 10 is again shown encapsulated in metal 11. In 
It is understood that a single quantum wire may possess this instance, however, the remaining lateral surface of 
variable cross sections, i.e., at any point along its length the quantum wire 10 is bounded by a semiconductor 
,t may yary from circular, to rectangular, to arbitrary, lattice layer 14 which is matched to the polar semicon- 
depending on its function within a device or design 30 ductor quantum wire 10. The semiconductor lattice 
constraints imposed upon the device. layer 14 is in turn bounded by a polar or non-polar 

To facilitate the growth of uniform and smooth met- semiconductor 13. Through modulation doping of the 
al-semiconductor interfaces it may be advisable to select semiconductor lattice layer 14 bounding the quantum 
metal-semiconductor combinations such as Fe-GaAs wire 10 the carrier confinement density in the quantum 
which have lattice constants differing approximately by 35 wire 10 may be increased 
LÄ!f«°f " ^ger^!T!JfA metal-semiconductor In FIG. 6(a), a polar semiconductor quantum wire 16 
combinations uiclude NiAl-AlAs, MnAl-AIAs, and with an arbitrary cross section is shown encapsulated in 
CoAl-AlAs. Selecting metals with lattice constants less metal 15 on approximately 75% of its lateral surface, 
than that of the semiconductor enhances the possibility The remaining lateral surface of the quantum wire 16 is 
of recovering the electronic properties of the bulk metal 40 exposed to a vacuum 17. FIG. 6(b) depicts the polar 
m the nunimum distance into the metal from the metal- semiconductor quantum wire of FIG. 6(a) 16 again 
semconductormterfaceFe has a lattice constant about encapsulated in metal 15 with the remaining lateral 
one-half that of GaAs so the Fe-GaAs system satisfies surface of the quantum wire 15 bounded by a semicon- 
the condition of having.lattice constants differing by an ductor lattice layer 19 which is matched to the polar 
S,rifr^SE^r ?^^COT,diti0v0fl?vin!the 45 ««ri«>nductor quantum wire 15. The semiconductor 
lattice constant of the metal being less than that of the lattice layer 19 is in turn bounded by a polar or non- 
semiconductor. Finally, as will be explained in the next polar semiconductor 18. Through modulation doping of 
paragraph, it may be desirable to select a metal with a the semiconductor lattice layer 19 bounding the quan- 
large magneüc permeability since the classical penetra- turn wire 16, the carrier confinement density in the 
tion distance of the LO phonon field into a metal may be SO quantum wire 16 may be increased 
reduced asthe magneüc permeability is increased. Because of the practical difficulties in achieving con- 
«,LS v^L *™?^/«««>y *>? Michael A. sistently uniform and smooth metal-semiconductor in- 
Stroscio, K^ w Kim, Gerald J. Iafrate, Mitra Dutta and terfaces, it is envisioned that FIGS. S(b) and 6(b) repre- 
HaroKIL.Grubinm t£e Proceedings of the 1991 Interna- sent the best mode of practicing the invention. 
«"£, SV^'^0r Pevke Raeanh Symposium, pages 55 Alternate embodiments of the structures depicted in 
87-91 1991 Engineering Academic Outreach Publica- FIGS. 5(a). 5(4). 6(a) and 6(b) include structures where 
tion. School of Engineering and Applied Science, Uni- arrays of parallel quantum wires replace the sinele 
£rS,lJ>f,Äia' ?S?N Number: »-»«»»«WO. q»«ntum wire as well as structures where the quantum 
Dec. 4-6,1991, thatthe interface LO phonon potential wires are bounded by multiple regions of metal and 
vanishes as the interface phonon attempts to penetrate 60 other materials such as insulators, semiconductors and 
from a polar semiconductor into a metal. This vanishing      vacuum. 
of the interface LO phonon mode coupled with the fact The embodiments of FIGS. 5(6) and 6(b) are pre- 
tnat the interface phonon modes are long-range Cou- ferred when carrier densities must be enhanced above 
tomb modes, * discussed in S. Baroni, P. Giannozzi and the level remaining after depletion of the semiconductor 
E. Molinan, Physical Review. B41, 3870, 1991, implies 65 near the metal-semiconductor interface. Other embodi- 
that encapsulating a substantial fraction of the quantum- merits may be used when the remaining density of either 
wire lateral surfaces wjth metal will eliminate or greatly majority or minority carriers is adequate after deple- 
reduce the strength of the interface LO phonon poten-      tion 
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What is claimed is: 8. The completely metal-encapsulated quantum wire 
1. A partially metal-encapsulated quantum wire for of claim 6 wherein the lattice constant of said polar 

enhanced charge transport comprising: semiconductor quantum wire is an integral multiple of 
a polar semiconductor quantum wire having a lateral      tne l*ttice constant of said metal, 

exterior surface and having a lattice constant of 5      9- ^e completely metal-encapsulated quantum wire 
predetermined value; and of claim 6 wherein a cross-section of said polar semicon- 

a metal encapsulation abutting at least a fifty percent      ductor «l0""™ wire is rectangular, 
portion of the lateral exterior surface of said polar        ,1?- J1* «"np'eteJy metal-encapsulated quantum wire 
semiconducting quantum wire thereby leaving« ,„ °f ctam 6 wherdn • «tweakm of said polar semicon- 
exposed surface of said polar quantum wire, said 10 ductorquantum wire is circular, 
metal encapsulation havmg a bSoteaZTSt        ,'V T^00?^ metal-encapsulated quantum we 
predetermined value. of cl^ 1 wberem «d P° V «nuconductor quantum prcöcicrauBco v«iuc. »« B AJAS and said metal s selected from the group 

2. The partially metal-encapsulated quantum wire of     including NiAl, MnAl, and CoAl. 
claim 1 wherein said metal is magnetic.                       i5 12. The partially metal-encapsulated quantum wire of 

3. The partially metal-encapsulated quantum wire of claim 6 wherein said polar semiconductor quantum 
claim 1 wherein the lattice constant of said polar semi- wire is AlAs and said metal is selected from the group 
conductor quantum wire is an integral multiple of the including NiAl, MaAl, and CoAl. 
lattice constant of said metal. 13. The completely metal-encapsulated quantum wire 

4. The partially metal-encapsulated quantum wire of 20 of claim 1 wherein said polar semiconductor quantum 
claim 1 wherein a cross-section of said polar semicon-      wtT* is GaAs and said metal is Fe. 
ductor quantum wire is rectangular. **• To* partially metal-encapsulated quantum wire of 

5. The partially metal-encapsulated quantum wire of c,aiia 6 wherein said polar semiconductor quantum 
claim 1 wherein a cross-section of said polar semicon-      wire * GaAs ind **** meul •* Fe- 
ductor quantum wire is circular 25     1S- 'rht P«">«By metal-encapsulated quantum wire of 

«. A completely metal-encapsulated quantum wire      claim 1 *herein ^ met^ <**!***** •*>«* «1"«» 
for enhanced charge transport comprising: seventy five percent portion of said polar quantum wire. 

£rÄS* P       "' » tingthe «posed surfa^the polar quantum wire, the 
, ,   J\        ,    , ....       .      semiconductor lattice being comprised of at least two 

a layer of metal completely encapsulating the lateral      different semiconductor materials, 
exterior surface of said polar semiconducting quan- 17. jhe partially metal-encapsulated quantum wire of 
turn wire, said layer of metal having a lattice con-      claim 16 wherein one of the semiconductor materials 
stant of predetermined value. 35 comprising the semiconductor lattice b modulation 

7. The completely metal-encapsulated quantum wire      doped, 
of claim 6 wherein said metal is magnetic. •••.•♦ 
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NOTE 

GENERALIZED PIEZOELECTRIC SCATTERING RATE FOR 
ELECTRONS IN A TWO-DIMENSIONAL ELECTRON GAS 

(Received 21 May 1993; in revised form 19 June 1993) 

INTRODUCTION 

Many envisioned applications of mesoscopic semiconductor 
structures are based on the transport of charge carriers at 
low temperatures and at low carrier energies. At such low 
temperatures and low carrier energies, the «-trring of 
carriers from acoustic phonons may dominate over carrier 
scattering from optical phonons[l-4]. Transport of carriers 
in a two-dimensional electron gas is of special importance 
within the field of carrier transport in semiconductors. In 
this connection. Pricejl] has given an excellent comprehen- 
sive treatment of the role of phonon scattering in two-di- 
mensional electron transport in polar semiconductor layers; 
specifically, for the case of a two-dimensional electron gas. 
Price has given a detailed account of electron scattering by 
the Fröhlich, deformation and piezoelectric potentials. In 
the case of piezoelectric scattering of electrons from acoustic 
phonons. Price has used the piezoelectric constants given by 
Zook[2] in the form summarized by Hearmonß]. As dis- 
cussed by Price, the piezoelectric constants given by Zook 
were derived under the assumption that the elastic an- 
isotropy of the crystal is small. Price has made the additional 
approximation of averaging Zook's piezoelectric constants 
over the azimuthal directions in the plane of the two-dimen- 
sional electron gas. In this work. Price's treatment of 
piezoelectric scattering is generalized by not taking such an 
average over these azimuthal directions. 

DISCUSSION 

As discussed previously! 1), the piezoelectric scattering rate 
function, W(l,2), for electrons in a two-dimensional 
electron gas interacting with the acoustic phonon in a 
zmcblende crystal may be written as: 

KU2) = ^^2J[£(l)-£(2)], 
where: 

with: 

* W 
_kT(ehltj> x ($     2£\ 

Q2 + q I*. 

4 = 36 

and 

Q2 + q 

(?2+e2)3' 

rd*. 

(I) 

(2) 

(3a) 

(3b) 

(4a) 

2^,-(-/4, = - :b2Q1r + Q;Ql + Qlqty.    (4b) tf + Q2) 
in these results W(l. 2) equals the rate of transitions from 
initial state. I. to final state. 2. per unit volume of k space, 
q is the acoustic phonon wavevector normal to a two-dimen- 
sional electron gas in the (I00) plane. ß, and Q. are the 
phonon wavevectors in the(lOO) plane, ß2 = ß2+"ß2 *is 

Boltzmann's constant, T is the temperature of the lattice, e 
is the charge on an electron, hu is the piezoelectric constant 
which has a value of roughly 1.57 x 10» V/m for GaAs. p is 
the mass density, and s,(s,) is the longitudinal (transverse) 
velocity of sound in the lattice. The limitations of 
eqns (l)-(4b) have been discussed previously in Ref. [I] 
where it is noted that a linear proportionality between 
phonon frequency and phonon wavevector has been as- 
sumed. Upon performing the indicated integrations over q: 

it        9        QlQl 

Ä*"4*<ßi + c})«- (5a) 

and 

Thus: 

-B    * l 3»     QlQl 
Q   ,"2(ßJ + ß2)'«"4(ßf. + ß.?)«-        (5b) 

2    LV* (Qi+QWM! 

\2(Q2r + Q!),a    4(ß? + ß?)w>iTj   (6) 

As in Refs [1-3], the effects of screening have not been 
considered in deriving eqn (6). 

In the limit where the average is taken over arimuthaJ 
directions! I]: 

ßSßl-ßVs. 
and 

(7a) 

ß?-ß.?-ßJ/2, (7b) 
with the result that: 

kT(ehHfn(9   I      I3  I \ 

2      ß^32p1f + 32^f/ 
(8) 

as originally derived by Price. 
In deriving the generalized piezoelectric scattering rate for 

a two-dimensional electron gas. it has been assumed that the 
stiffness constants for the zincblende crystal are isotropic. 
Indeed, for each of GaAs, GaP. InSb. InAs and InP the 
three independent experimentally-determined stiffness con- 
stants differ in magnitude by less than 35% from stiffness 
constants consistent with an isotropic medium. On the other 
hand, the generalized expression for nb\IQ may vary from 
zero to twice its azimuthaily averaged value, 9s/32ß de- 
pending upon the relative magnitudes of ßr and Q.. While 
applications such as calculations of mobility were not 
considered in this work, the fact that the generalized ex- 
pression for nB,/Q may vanish as ßr or Q. goes to zero may 
be of special significance of the frequently-discussed cases 
where the dominant charge carrier momentum in the two-di- 
mensional electron gas or the phonon momentum is highly 
anisotropic; in particular, mobilities for such systems may 
be enhanced since the longitudinal scattering terms may be 
suppressed as a result of the anisotropic form of eqn (5a). 
The variation in nBJQ is much less pronounced having a 
range from !0it/32ß to l6»/32ß depending upon the rela- 
tive magnitudes of Q and Q.. 

I8l 
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CONCLUSION 

A generalized piezoelectric scattering rate for electrons in 
a two-dimensional electron gas has been derived by relaxing 
the previous constraint of averaging over azimuthal 
directions in the two-dimensional electron gas. The general- 
ized scattering rate is found to deviate little from the 
azimuthally averaged rate for terms depending on the 
transverse acoustic phonon velocity but the corrections 
to the terms containing the longitudinal acoustic phonon 
velocity may be substantial. 
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Transitions between r and X states of short-period superiattices driven 
by antisymmetric interface phonons 
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Relative transition probability amplitudes for antisymmetric-interface-phonon-assisted T-X 
transitions in selected short-period superiattices are estimated by using the dielectric continuum 
model for antisymmetric interface optical phonons in conjunction with a Kronig-Penney model 
of the superiattice electronic properties. 

I. INTRODUCTION 

Approximate expressions for the phonon dispersion re- 
lation for each of the confined and interface (IF) 
longitudinal-optical (LO) phonon modes as well as for the 
carrier-LO-phonon interaction Hamiltonian are provided 
by the dielectric continuum model of confined and inter- 
face longitudinal-optical phonons.1-5 Furthermore, this 
model predicts an enhancement of carrier-interface- 
phonon scattering relative to carrier-confined-phonon scat- 
tering in polar semiconductor heterostructures as 
heterojunction-to-heterojunction separations are 
reduced.5,6 Recently, measured Raman spectra7 have pro- 
vided evidence in support of the predicted enhancement5 in 
carrier-interface-phonon scattering in short-period GaAs- 
AlAs superiattices. In addition, related evidence confirm- 
ing the importance of interface-LO-phonon modes has 
come from two separate observations: interface-phonon- 
assisted T-X transitions3 in GaAs/ALAs quantum wells 
and interface-phonon-assisted tunneling9 in double-barrier 
GaAs/AlAs quantum well structures. In related measure- 
ments, exciton delocalization and electron conduction via 
the X valley have been observed in GaAs-AlAs quantum 
wells.10-" 

Motivated by predicted enhancements in carrier- 
interface-phonon scattering5 in short-period superiattices 
as well as by recent Raman spectra7 involving interface 
phonons, this paper presents the first theoretical treatment 
of interface-phonon-assisted T-X transitions for antisym- 
metric phonons; symmetric IF phonons are not considered 
herein since the relative T-X transition amplitudes for sym- 
metric IF phonons have been derived previously.11 The 
Kronig-Penney formalism of Cho and Prucnal12 is used in 
conjunction with the antisymmetric interface phonon en- 
ergies and the IF phonon mode symmetries determined by 
the dielectric continuum model1"5 to specify the dimen- 
sional parameters of a number of GaAs-AlAs and GaAs- 
GaP superiattices which are expected to exhibit interface- 
phonon-assisted T-X transitions for particular T and X 
mimbands. Furthermore, the envelope wave function ap- 
proach is used to estimate the relative magnitudes of anti- 

symmetric interface-phonon-assisted T-X transitions in po- 
lar semiconductor superiattices. 

Typical interface phonon wave vectors13 are in the 
range of 0.01-0.02 A-1. Since these interface phonon po- 
tentials fall off exponentially,3,5 in tens of angstroms13 to 
e~l of the value of the phonon potential at the interface, 
the relative magnitudes of the interface-phonon-assisted 
T-X transition probabilities for these short-period superiat- 
tices are estimated by approximating the interface-phonon 
potential in the small-wave vector limit by using the enve- 
lope wave functions to evaluate the T-X overlap integral.14 

II. RELATIVE PROBABILITY AMPLITUDES FOR T-X 
TRANSITIONS ASSISTED BY ANTISYMMETRIC 
INTERFACE LO PHONONS 

A portion of the GaAs-AlAs and GaAs-GaP superiat- 
tices of interest in this work is shown in Fig. 1. Figure 1 (a) 
defines the T-valley discontinuity Vr, the effective masses 
in the barrier m7, and the well mu, as well as the barrier 
and well thicknesses, b and a, respectively. Figure 1(b) 
defines the corresponding quantities for the Jf-valley pa- 
rameters of the two semiconductor layers. 

For the GaAs-AlAs superiattice, m/s0.1Sm0> 

m^ftOoTmo, and V=Vr=l eV specify the T-valky 
properties; the corresponding parameters for the Jf-valley 
properties are m'b=\.lm^, m'w—l.lm0, and V=Vx=nO 
meV for the longitudinal X valley and m'b=0.23m0, 
m{,,=0.19mo, and V= Vx=YI0 meV for the transverse X 
valley. The numerical value of Vx is subject to large exper- 
imental uncertainty; however, it has been demonstrated 
previously11 that a 100 meV variation in Vx changes the 
energies of the X minibands by less than 2 meV. For the 
GaAs-GaP superiattice, m7=0.13m0, m//=0.067m0, and 
V= Fr=400 meV have been taken to specify the T-valley 
properties; the corresponding parameters for the Af-valley 
properties have been approximated by mft=1.3m<), 
mi,=0.91m0, and F= Vx=660 meV for the longitudinal X 
valley and by m{,=0.23/no, m^=0.25mo, and K= Vx=660 
meV for the transverse X valley. 
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FIG. 1. (a) This figure depicts a representative portion of the T valley 
conduction band minimum in a superiattice of period a+b-,VT is the T 
valley discontinuity and the effective masses m, and m„ are assigned to 
the indicated layers. Eis the energy measured relative to the lower value 
oftheT valley conduction band minimum, (b) This figure depicts a 
representative portion of the X valley conduction band minimum in a 
superlatnce of period a+b-, Vx is the X valley discontinuity and the effec- 
tive masses m» and m» are assigned to the indicated layers. E is the energy 
measured relative to the lower value of the AT valley conduction band 
minimnm. 

In the GaAs/AlAs double-barrier quantum-well het- 
erostructures, the two antisymmetric interface phonon 
modes have potential envelopes, fA*(Qj), of the formw 

/-<*(&*) = 

-e-C«+H   z<-K (la) 

sinh(ßj)/sinh(&a),   k<z<?a,   (lb) 

+«-«-*«    z>fe {lc) 

where the low-wave vector limits of the A* modes ap- 
proach the AlAs TO and the GaAs LO frequencies de- 
noted by <oA+ and aA-, respectively. For the AlAs-GaAs 
system, the zone-center values for *»s+, fuoA+, fuaA 

and fws_ are -50, 45-, 36, and 33 meV, respectively! 
Thus, for the antisymmetric modes, as ß-0, the frequency 
of the A+ mode, aA+, approaches the AlAs transverse- 
optical (TO) frequency; the frequency of the A~ mode, 
aA_, approaches the GaAs longitudinal-optical (LO) fre- 
quency. Likewise, for the GaP-GaAs system, the zone- 
center values for Äa5+, ÜaA+, üaA_, and Äa5_ are - 50, 
45, 36, and 33 meV, respectively. In these results, z is 
directed normal to the heterointerfaces located at z= ±a/2 
and Q is the wave vector of the interface optic phonon. 

The relative magnitudes of the antisymmetric- 
interface-phonon-assisted T-X transition probability am- 
plitudes are given herein for the special case where super- 
lattice layer dimensions are small compared with the scales 
characterizing the exponential decay distances for interface 
phonons; these results follow immediately upon calculating 
the overlap between the antisymmetric interface phonon 
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envelopes and the miniband states of Cho and PrucnaL11-12 

Since the IF phonon potential times the charge of the car- 
rier is identically equal to5 the carrier-IF-LO-phonon per- 
turbation Hamiltonian and since the T components of the 
AMike and T-like wave functions are proportional to the 
mixing potential for nondegenerate miniband minima," 
the relative probability amplitudes for interface-phonon- 
assisted T-X transitions are approximated accurately by 
the overlapping integral of the envelope function of the T 
valley, that of the X valley, and the potential of the inter- 
face phonon. Accordingly, for transitions between the low- 
est X miniband and a T miniband with even index /, the 
probability amplitude of a T-X transition assisted by an 
antisymmetric interface phonon of a given wave vector, Q, 
is proportional to 

■Jo swh(iOa) 

rbn 
+2 (-cf, 

Jo 
14°) 

sinh(gz) 

sinh(|ßd) 
cos(ß'z) 

Xcosh(ali)z)dz, (2) 

where the envelope wavefunctions for the even-index I* 
bands at energy minimum have been taken as,U2',6 

*&> = -«{» sin(^r),    -j<z<l, (3a) 

(3b) 

4jr,=^cosh[a^[z-(f±£]]],   f^+4s     (3c) 

in Eqs. (3a)-(3c), 

t™b 

(4a) 

(4b) 

^-^(V)^/«-^0!). (4c) 
and 

,(0 = 1 /(^nr [ff(0*+sinh(a<fl*)] 

cosh2(a('V2)   1      ,., „     v 
+ sin^'W) W* W(0«-*(^)]) 

1/2 

(4d) 

The envelope wavefunctions for the lowest X miniband are 
defined by 

*£&-«£ CMh(a'*),    ~2<*<2' (5a) 
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*«x>=«i«»0' 

Ä=fl!C°S ß' 

fa+b 

-m 
,    ---i<z<--,    (5b)       ^^a^'sin ß '(2) Z— 

a+b\\ a       a 
,   -<z<r+b     (7c) 

£       a define the envelope wavefunction for the second X mini- 
- <z<2+*- (5c)       band. In Eqs. (5a)-(5c) and Eqs. (7a)-(7c), 

For transitions between the second X miniband and a T 
miniband with even index /, the transition probability am- 
plitude for the case of antisymmetric interface phonons is      aQd 
proportional to 

Jo sinh(K?a) sinh(jßa) 

6/2 rb/i 
Xcosh(a'wz)dz+2        (a\{2)a[n) 

Jo 

sinh(ßz) ,,. ... 
X — sin(0'(2)z)cosh(a("z)az, 

sinh(lßÄ) 
(6) 

where 

1.(2)   _„'(2) rdx) =«:    cosh(a"2'z),    -- <z<^ 

Ä=a;U)sin ß HD 
fa+b\] z+[- 

a a 

a'^^m^F-tf'W (8a) 

0'(/)= yjlm'^/f?; (8b) 

in the case where i— 1, a'(I) and 0'(I) are denoted simply 
by a' and 0\ In Eqs. (5a)-(5c) 

a\ =cosh(a'o/2)a'2/cos(ß'b/2) 

and 

*■'/( 

cosh2(a'a/2) [07>+sin(0'6)] 
cos2(jS'6/2) 20' 

[a'a+sinh(a'a)]\1/2 

+—s?—j • 
(^a)       In Eqs. (7a)-(7c), additional quantities are 

a[i2) = -cosh(a'(2)a/2)a;(2)/sin(0'(2)ft/2) 

(7b)       and 

(8c) 

(8d) 

(8e) 

l2<2)=1 /(s™ Ia'<2,fl+Sinh(a'<2,a)^ W^W2^ [ß'™b-si*(ß'™b)])i/Z. (80 

The integral /*l-/* may be performed to yield 

/<••'>=. 
2ai°a2     f (ß+a')cosh[(ß+a')a/2]sin(j8('V2)   0(/) sinh[(ß+a')a/2]cos(/9(,)a/2) 

2 sinh(ißö) [(ß+a')2+(/310)2] t(ß+a')2+(/31")2] 

(ß-a')cosh[(ß-a')a/2]sin(g('V2)   £^° sinh[(ß-a')a/2]cos(0(,V2) 
+ [(ß_a')2+(^)2] [(ß-a'^+tf*")]1 

2a{flJ°     f(ß+a(")cosh[(ß+aIO)&/21cos(/3,&/2)   ff sinh[(ß+g(,))6/2]sin(|g'6/2) 
[(ß+al,,)2+(£')2] + [(ß+all,)2+(£')'] 2 sinh(&?A) 

(ß-a^coshaß-g'^/^cos^'^)   ff' sinh[ (ß-a'" W2]sin(ff'6/2) 1 
[(ß-al")2+(ß')2] + [(ß-au,)2+(/3T] 

2fl;4°     f        (ß+al/)) 

2 sinh(jß6) 

(ß-a(fl) 
[(ß+a",)2+(ff')2] + [(ß-a'")2+(/3'n 

(9) 

Likewise, the integral T*2^ may be evaluated as 
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/w. 
U)„>(2) -2a\"a'2 (ß+o'(2))cosh[(ß+a'(2))a/2]sin(/S('V2)   ß(i) sinh[(ß+a'<2))a/2]cos(/3('V2) 

2sinh(k?a) UQ+a'^y+iß")1) KQ+a'^V+W'Y] 

(ß-g'(2>)cosh[(ß-a,(2))a/21sin(£(,)a/2)   ßP sinh[(ß-a'(2))a/2]cos(0(,)a/2) 
+ ÜQ^W+ißW] 

A2)„(i) 

+ 
la\y"d 

2 sinhtiQb) 

[(Q-a'«>)2+(?'>)<] 

(ß+a(O)cc*h[(ß+a!/))&/2]sin(0'(2V2)   ß'(2) sihhUQ+aU)W2)cos(ß'mb/2) 

UQ+aM)1+(ß'w)1) 

(ß-g('"))cosh((ß-a(0)&/2)sin(g,(2V2)   ^)sinh((ß-a(;))6/2)cos(0'(2V2) 
[(ß-at',)2+(0'u,)2l 

[(Q+aW+WW) 

 /2)cos(/3 

[(ß-oW+W1")'] 
(10) 

The relative antisymmetric-interface-phonon-assisted 
transition probability amplitudes for transitions between 
the second T miniband I"2 and various X minibands as 
given by T*'1^ and f-2^ are summarized in Table I. In each 
case, the amplitude corresponding to the smaller dimen- 
sional parameter applies to the situation where the T mini- 
band minimum is 45 meV greater than the X miniband 
minimum; the amplitude given for the larger dimensional 
parameter is for the situation where the T miniband min- 
imum is 45 meV less than the X miniband minimum. In 
these calculations a single value for the higher-frequency 
antisymmetric interface phonon mode has been assiimw^ 
this assumption is accurate since both the AlAs and the 
GaP TO frequencies at zone center are about 45 meV. 

TABLE I. Intcriace-phonon-assisted transition probability amplitudes 
are given in this table for transitions between the second lowest-energy r 
mmihanri and the two lowest energy X1 and X1 minibands for a variety of 
GaAs-AlAs and GaAs-GaP superiattices. As explained in the test, the 
amplitude corresponding to the smaller dimensional parameter applies to 
the case where the T miniband minimum is 45 meV greater than the X 
miniband minimum and the amplitude given for the larger dimensional 
parameter is for the case where the r mmiband minimum is 45 meV less 
than the X miniband minimum. The accuracies of the approximate prob- 
ability amplitudes in this table increase as both a and b are decreased: in 
aaainon. tne sum 
not been included 

lara degeneracy factors tor tne A. ana * Danas nave 
in these approximate probability amplitudes. 

A£=45 meV 

r2-*,' r2-*,' r,-*,' rw,' 
GaAs-AlAs 0.06 0.19 0.35 0.35 
a=b a=75 A a=72 A o=72 A o=62 A 

0.0S 0.08 0.27 0.31 
o= 101 A o=97.S A o=97 A o=81 A 

GaAs-AlAs 0.21 0.33 0.24 0.75 
6=o+37.5 A a=26 A o=24A 0=24.5 o=20 A 

0.17 0.16 0.16 0.60 
o=40A a=37 A o=37 A 0=28.5 A 

GaAs-GaP 
o=6+45 A 6<5Ä 6<5 A 0.39 

6=11 A 
0.31 

6=20 A 

b<Sk 6<5 A 0.31 
6=12 A 

0.40 
6=25 A 

GaAs-GaP 
o=6+37.5 A 6<S A b<Sk 0.25 

6=9 A 
0.30 

6=19 A 

b<5k b<Sk 0.31 
6=11 A 

0.43 
6=24 A 

III. CONCLUSION 

The dimensional parameters of Table I are based on 
the requirements that the GaAs layers in the GaAs-AlAs 
structures be thin enough for confinement effects to elevate 
the r, miniband to energies near those of the X mi««h«nH 
and that the GaP layers in the GaAs-GaP structures be 
thin enough for confinement effects to elevate the X mini- 
band to energies near the I* minibands.17'"20 For the dimen- 
sional parameters considered in this paper the constraints 
imposed by these confinement effects, as well as those im- 
posed by die finite energy ranges associated with Vr and 
Vx, the r3 miniband energies are raised to values too high 
to obtain mimband-to-miniband transitions involving the 
allowed TyX2 couplings. For this reason, only TrX% 
transition probability amplitudes are given in Table I. 
Transitions involving T2 minibands are not allowed for 
symmetric interface phonon potentials when mmiband to 
miniband transitions occur between miniband minima; 
however, it is clear the transitions involving the T2 bands 
are allowed for the case of antisymmetric interface pho- 
nons considered in this paper. 

In summary, this paper provides the first theory of 
antisymmetric-interface-pnonon-assisted T-X transitions 
in short-period superiattices. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the many fruitful 
discussions with Professor A. Petrou of SUNY Buffalo, 
Professor W. Poetz of the University of Illinois at Chicago, 
Dr. Gerald J. Iafrate, Director of the U.S. Army Research 
Office, Professor K. W. Kim of the North Carolina State 
University, and M. U. Erdogan of the North Carolina 
State University. The authors are also grateful to Patricia 
Lassiter for the excellent preparation of the manuscript 

'R. Fuchs and K. U Kliewer, Phys. Rev. 140, A2076 (1965). 
iJ. J. Licari and R. Evrard, Phys. Rev. B 15, 2254 (1977). 
JN. Mori and T. Ando. Phys. Rev. B 40, 6175 (1989). 
«R Chen, D. L. Lin. and T. F. George, Phys. Rev. B 4L 1435 (1990). 
5K W. Kim and M. A. Strascio. J. AppL Phys. 68, 6289 (1990). 
»M. A. Stroscio. G. J. Iafrate. K. W. Kim, M. A. Uttlejohn, H. Gor- 
onion, and G. N. Maracas, AppL Phys. Lett 59, 1093 (1991); K. W. 
Kim, M. A. Littlejohn, M. A. Strocto, and G. J. Iafrate, Scmicond, Sd. 
TechnoLB7,49(1992). 

1980      J. Appl. Phys., Vol. 75. No. 4,15 February 1994 Stroscio, Outta, and Zhang 



'K. T. Tsen, K. R Wald. T. Ruf, P. Y. Yu, and ¥L Morkoc, Phys. Rev. 
Lett 67, 2557(1991). 

•L. P. Fu, T. SchmiedeL A. Petrou. M. Dutta, P. G. Newman, and M. 
A. Stroscio. Phys. Rev. B 46, 7196 (1992). 

'S. Teitswotth and P. Turley, Phys. Rev. B 55, 8181 (1991); P. J. 
Turiey, C R. Wallis. S. W. Teitsworth. W. Li, and P. K. Bhattacharya, 
ibid. 47, 12640(1993). 

"M. Dutta, D. D. Smith, P. G. Newman, X. C. Lin, and A. Petrou, Phys. 
Rev. B 42, 1474 (1990). 

" M. Dutta and M. A. Stroscio, J. AppL Phys. 73, 1693 (1993). 
I2H.-S. Cho and P. R. PtucnaL Phys. Rev. B 36, 3237 (1987). 
13 N. J. Pulsford. R J. Nicholas, P. Dawson. K. J. Moore, G. Duggan, 

and C T. B. Foxon. Phys. Rev. Lett 63, 2284 (1989); H. Rucker, E 

Molinari, and P. LuglL Phys. Rev. B 44, 3463 (1991). 
"T. Ando, S. Wakahara. and H. Akers, Phys. Rev. B 40, 11609 (1989); 

T. Ando and H. Akera. ibid. 40. 11619 (1989). 
15 M. U. Erdogan. K. W. Kim, and M. A. Stroscia J. AppL Phys. 74, 

4777 (1993). 
16 G. Bastard. Phys. Rev. B 24, 5693 (1981). 
"M.-H. Meynadier, R. E. Nahory, J. M. Woriock. N. C Tamargo, J. L 

de Migues, and M. D. Sturge, Phys. Rev. Lett 60, 1338 (1988). 
"N. J. Pulsford, R. J. Nicholas, P. Dawson. K. J. Moore. G. Duggan, 

and C T. Foxon, Surf. Sei. 228, 62 (1990). 
"H. P. Zhou and C M. Sotomayer Torres, Proc SPIE1675,186 (1992). 
20 M. Reico, G. Armelles, J. Mdendez, and F. Briones, J. AppL Phys. 67, 

2044(1990). 

J. AppL Phys., Vol. 75. No. 4.15 February 1994 Stroscio, Dutta, and Zhang 1981 



Super/attices and Microstruetures. Vol. 13. No. 4.1993 401 

NORMALIZATION OF INTERFACE OPTICAL PHONON MODES IN 
CYLINDRICAL QUANTUM WIRES WITH 

SEMICONDUCTOR-SEMICONDUCTOR AND METAL-SEMICONDUCTOR 
BOUNDARY CONDITIONS ; 

Chui-Jih Chiu 

Department of Electrical Engineering, Duke University 
Durham, NC 27708-0291 

and 

Michael A. Struck) 

U. S. Army Research Office, P.O. Box 12211 
Research Triangle Park, NC 27709-2211 

(Received 11 February 1993) 

In this work, analytical solutions for the interface longitudinal-optical (LO) phonons 
in cylindrical polar-semiconductor quantum wires are normalized by the standard 
quantization condition. Two cases are considered: polar-semiconductor quantum 
wires encapsulated in another polar-semiconductor and polar-semiconductor quan- 
tum wires encapsulated in metal. For the case of metal encapsulation it is demon- 
strated that unwanted inelastic interface LO phonon scattering is eliminated since 
the interface modes do not satisfy the appropriate boundary conditions. 

1    Introduction 

In many embodiments of novel quantum-effect po- 
lar-semiconductor structures, charges are transported in 
quasi-one-dimensional quantum wires (1,2] which must 
support the transport of charges at high mobilities. It 
has recently been demonstrated that the LO phonons 
established at quantum-wire interfaces lead to dramatic 
enhancements in carrier-phonon interactions and con- 
comitant degradation in carrier mobility (3-6). It was re- 
cently demonstrated (7] that phonon modes may be tai- 
lored through the judicious use of metal-semiconductor 
interfaces in such a way as to dramatically reduce un- 
wanted emission of interface LO phonons and, conse- 
quently, to lead to the achievement of high quantum- 
wire mobility. 

Theoretical studies of the interaction between LO 

phonons and carriers in a polar-semiconductor quan- 
tum wire (8] have revealed the presence of discrete LO 
phonon modes similar to those identified for polar-semi- 
conductor quantum wells [3,9,10,11]. As for the case 
of quantum wells, interface LO phonons are established 
at the boundaries of quantum wires [4]. Furthermore, 
it has been shown that, for carrier energies in excess 
of the interface LO-phonon energy, the inelastic scatter- 
ing caused by earrier-interface-pnonon interactions dom- 
inates over other scattering mechanisms when confine- 
ment occurs on a scale for about 40 k or less [5]. 

The technology for the epitaxial growth of metals 
in intimate contact with polar semiconductors (12,13] 
provides an impetus for applying the dielectric contin- 
uum model of interface-phonon modes to determine the 
carrier-interface-phonon interaction Hamiltonian near a 
semi-infinite metal-polar-semiconductor interface (6,7). 
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The validity of using such a continuum approach in 
describing interface modes is supported by recent de- 
tailed microscopic calculations of interface modes in po- 
lar semiconductors [14] which indicated that the dielec- 
tric continuum model provides an accurate formalism 
for modelling carrier-interface-phonon interactions. 

In this paper, the application of metal-semiconduc- 
tor boundary conditions to the interface phonon modes 
in polar-semiconductor quantum wires encapsulated in 
metal reveals that no interface modes are allowed in such 
as structure. 

The case of LO phonon 
modes in a cylindrical 

quantum wire 

■ In this section, the polarization eigenvectors and 
dispersion relations of LO phonon modes in a cylindrical 
quantum wire are derived in the continuum approxima- 
tion. A cylindrical quantum wire with dielectric function 
<](<•;) is assumed to be surrounded by a material with 
dielectric function «i(u»). Since the system is translation- 
ally invariant in the z direction, the potential describing 
the optical-phonon modes may be taken as 

and the dispersion relation is, 

4(r,9,z) = *{r,9)exp(ikz), 0) 
where k„ the phonon wave vector in the z direction, has 
been denoted by k; we shall use this notation through- 
out this paper. In the absence of any free charge, the 
potential #r,0,z) of the phonon modes must satisfy 

V* - *'♦ = 0. (2) 

Given Eq.(l) , the solution for Eq.(2) has two forms. 
Inside the cylindrical quantum wire, the solution is, 

fa{r,9,z) = AI¥(kr)txp(iv9)txp(ikz). (3) 

Outside the cylindrical quantum wire, the solution takes 
the form, 

fa{r,9,z) = BKv(kr)txp(iv9)txp(ikz),        (4) 

where A and B are constant, and /„(AT) and K,(kr) are 
modified Bessel functions. The potential ^ is kept con- 
tinuous through the space and the normal component 
of e«E is kept continuous at the quantum-wire bound- 
aries. The following two conditions have to be satisfied 
at the boundaries: fa = fa and t\Ei = «j£j. From the 
continuity conditions, A and B satisfy, 

A 
B 

K.(kp) 

MM' (5) 

«a 

h(kp)Kl(kp) 
K.(kp)iuki>y (6) 

where p is the radius of the cylindrical quantum wire and 
the prime denotes the derivative with respect to p. The 
microscopic relations (4,10] which govern the equation 
of ionic motion yield the following expression for the 
polarization field P(r): 

P{r)   =   n,e;e;i«(r) 

-   «-e;®»*£u(r,9,k)exp(ikz),      (7) 
fc 

where u(r) is the relative displacement of an km pair, the 
subscript n labels the material region, e£ is the effective 
charge of an km pair, and n „ is the number of km pairs 
per unit volume. In addition, &Z' = 1 + MnO.^ — 
"D/ef wbere fin is the reduced mass of the km pair, «u 
is the electronic polarizability per ion pair, and wM is the 
frequency associated with the short-range force between 
ions. To ensure proper quantization of the phonon field 
(10,16], each mode must satisfy, 

C jf K^i)*«n(M«»»£)i«<W«» - ».   (8) 

where R extends over all values where the relative dis- 
placement has a nonzero value, and L is the length of the 
cylindrical quantum wire; in this result, u has been nor- 
malized by dividing the displacement by Jh/2u. Using 
the relation 

_   .i auH 
-  «o: 2w   du (9) 

as in Ref. (16], it evidently follows from Eqs. (3), (4), 
(7) and (8) that the normalization constant, A, satisfies. 

27 lo   [ A*\V(h(kr)txp(iv9))r 
■fVmkr)exp(iu9)))rdrd$ 

•(V(K,(Jb-)exp(tirf)))rdr<tf 
= 1. (10) 

where the subscripts / and ( label the longititudinal- 
optical (LO) and the transverse-optical (TO) modes, 
respectively. In these results C\ and C» are defined 
by Ci = 2TLC0CI(OO)(WJI, - u>?,)/(w2 - u»J,)2 and Cj = 
2*L€,c,(oo)(w?1 -P- vl,)/(J> - J>a)\ 
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For initial electron energies in the range from 0 to 
250 meV, the phonon wavevector, k, varies from 0.01 A-1 

to 0.15Ä"1 in GaAs and has typical values of about 
O.OZA"1. Since the interface phonon potentials fall off 
roughly as txp(—kr) near heterointerfaces, the transi- 
tion from weak to strong interface-phonon effects should 
occur in the neighborhood of kr = kp = 1. Taking 
k = 0.02Ä-1, the integrals in Eq. (10) have been per- 
formed for values of p such that kp = 0.5, 1.0, 2.0 and 
3.0. With v = 0, the integrals in Eq. (10) may be per- 
formed numerically and the normalization constant, A, 
may be written in the form A = 1/VxiG'i + XJCJ, where 
the pair (*,, x,) has the values (0.0040723, 0.700749) 
for kp ~ 0.5, (0.737697,1.45499) for kp = 1.0, (1.91922, 
7.48258) for kp - 2.0, and (21.0182, 46.5724) for kp = 
3.0. When the radius of wire, p, decreases, the constant, 
A, increases. This implies that interface modes are im- 
portant when the radius of the cylindrical quantum wire 
assumes smaller values. This conclusion is in agreement 
with Ref. [4] where it is demonstrated that the potential 
of interface phonon* with k m 0.02A"1 begins to dom- 
inate over the potential of confined phonons when the 
lateral dimensions of rectangular quantum wire are less 
than 50 A~K 

3    Demonstration that no 
interface modes exist for 

quantum wires encapsulated 
in metal 

In this section, the interface LO-phonon is discussed 
for the semiconductor-metal structure. Recently, it has 
been argued that the confined and interface LO phonons 
in mescacopic devices may be tailored through the ju- 
dicious use of metal-semiconductor interfaces in such a 
way as to dramatically reduce unwanted interface LO 
phonon scattering. It is demonstrated that [7] only 
those confined and interface modes having odd poten- 
tials about the metal-semiconductor interfaces satisfy 
the boundary conditions at the metal-semiconductor in- 
terface. 

In an ideal metal, no potential or electric field can 
exist. When a cylindrical quantum wire with dielectric 
constant, <i, is encapsulated in an ideal metal, the po- 
tential outside the cylindrical quantum wire is equal to 
zero, & = 0. Based on the continuum model, «^ must go 
to zero at the boundaries. +\(p, 8) = Al,(kp)txp(iv6) m 
0 has a solution if I„(kp) = 0 or if cxp(iv6) = 0. h(kp) 
is equal to zero only if v jt 0 and p = 0. For the real 
case kp > 0; thus, K(kp) cannot vanish and it follows 
that there is no solution for ^i satisfying the boundary 

condition. Hence, if v = 0, no interface modes exist 
in a quantum wire encapulated in metal. If c / 0 and 
L(kp) is nonzero, then it is impossible for «S(p,6) to 
be zero for all values 0; hence the only physical solu- 
tion corresponds to I¥(kp) = 0. This is similar to the 
result of Ref. [7] where it was demonstrated that only 
the antisymmetric interface phonon modes survive at a 
metal-semiconductor interface. In the case of a cylinder, 
however, no interface phonon modes survive. 

4    Conclusion 

Based on the dielectric continuum model, we have 
derived the potential of the cylindrical quantum wire. 
We have presented arguments indicating that inelastic 
scattering caused by the carrier interface-phonon inter- 
actions becomes increasingly important as the cylindri- 
cal quantum wire radius is reduced. We have considered 
the special cases of a GaAs cylinder embedded in AIAs 
and a GaAs cylinder embedded in metal. We have il- 
lustrated why the judicious use of metal-semiconductor 
interfaces allows the dramatic reduction or elimination 
of unwanted carrier energy loss caused by carrier inter- 
actions with interface LO phonon modes. In the case 
of a rectangular quantum wire [7,17) the imposition of 
a metal-semiconductor boundary condition eliminates 
only a subset of the interface LO phonon modes; how- 
ever, all of the interface LO phonon modes are elimi- 
nated for a polar-semiconductor cylinder embedded in 
a perfectly conducting metal. The reduction of carrier- 
interface-phonon interactions may be achieved by em- 
bedding polar-semiconductor quantum wires in metal. 
For metal-semiconductor combinations where the semi- 
conductor is inverted, such as for Al on InAs, this tech- 
nique provides a way to maintain high mobility trans- 
port in wire-like polar-semiconductor nanostructnres. 

Acknowledgement- This research was supported, in part, 
by the U.S. Army Research Office! One of us (M. A. S.) 
thanks Dr. Gerald J. Iafrate, Prof. Ki Wook Kim and 
Dr. Mitra Dutta for many stimulating conversations. 

References 

[1] M. Tsuchiya, J. M. Gaines, R. H. Yan, R. J. Simes, 
P. O. Holte, L. A. Coldren, and P. M. Petroff, Phys- 
ical Review Letters 62, 466 (1989). 

[2] M. Watt, C. M. Sotomayor Torres, H. E. G. Arnot, 
and S. P. Beaumont, Semiconductor Science and 
Technology S, 285 (1990). 



404 SuperlatticesandMicrostructures. Vol. 13. No. 4.1993 

[3] K. W. Kim and M. A. Stroscio, Journal of Applied 
Physics 68, 6289 (1990). 

[4j K. W. Kim, M. A. Stroscio, A. Bhatt, R. Mickevi- 
cius, and V. V. Mitin, Journal of Applied Physics 
70, 319 (1991). 

(5J M. A. Stroscio, G. J. lafrate, K. W. Kim, M. A. Lit- 
tlejohn, H. Goronkin, and G. N. Maracas, Applied 
Physics Letters 59, 1093 (1991). 

(6) M. A. Stroscio, G. J. lafrate, K. W. Kim, M. A. Lit- 
tlejohn, H. L. Grubin, V. V. Mitin, and R. Micke- 
vicius, in Nanostructurts and Mesoseopie Systems, 
edited by M. A. Reed and W. P. Kirk (Boston: Aca- 
demic Press), 379 (1992). 

[7J M. A. Stroscio, K. W. Kim, G. J. lafrate, M. Dutta 
and H. L. Grubin, Philosophical Magazine Letters 
65, 176 (1992). 

(8] M. A. Stroscio, Physical Review B 40, 6428 (1989). 
[9] J. J. Licari and R. Evrard, Physical Review B 47, 

1347(1977). 
[10] N. Mori and T. Ando, Physical Review B 40, 6175 

(1989). 

[11] K. L. Kliewer and R Fuchs, Physical Review 150, 
573 (1966). 

[12] J. P. Harbison, T. Sands, N. Tabatabaie, W. K. 
Chan, L. T. Florez, and V. G. Keramidas, Applied 
Physics Letters 53,1717 (1988). 

(13] A. Guivarc'h, J. Caulet, B. Guenais, Y. Ballini, R. 
Guerin, A. Poudoulec, and A. Regreny, Journal of 
Crystal Growth 95, 427 (1989). 

[14] H. Rücker, E. Molinari, and P. Lugli, Physical Re- 
view B 44, 3463 (1991). 

[15] K. T. Tsen, D. S. Smith, S.-C, Y. Tsen, N. S. Ku- 
mar, and H. Morkoc, Journal of Applied Physics 
70, 418 (1991). 

[16] L. Wendler, Physic» Status Solidi B 129, 513 
(1985). 

[17] A. R. Bhatt, K. W. Kim, M. A. Stroscio, G. J. 
lafrate, M. Dutta, H. L. Grubin, R Haque, and 
X. T. Zhu, Journal of Applied Physics 73, in press 
(1993). 



PHYSICAL REVIEW B VOLUME 48, NUMBER 19 15 NOVEMBER 1993-1 

Simplified microscopic model for electron-optical-phonon interactions in quantum wells 

A. R. Bhatt and K. W. Kim 
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911 

M. A. Stroscio 
U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709-2211 

J. M. Higman* 
Beckman Institute, University of Illinois, Urbana, Illinois 61801 

(Received 17 May 1993) 

A simplified microscopic model of optical phonons in dimensionally confined structures is formulated 
and applied to calculate electron-optical-phonon scattering rates in GaAs/AlAs quantum wells. For 
this simplified model which circumvents performing a complicated ab initio calculation of the force con- 
stants at the interface, it is demonstrated that the resulting dispersion relation and scattering rates for 
electron-optical-phonon interactions agree very well with those obtained from detailed ab initio studies. 
It is also shown that for GaAs/AlAs structures, the macroscopic dielectric continuum model provides a 
good approximation to the scattering rate predicted by the microscopic models. 

The electronic and optical properties of semiconductor 
superlattices (SL's) and quantum wells (QW's) have been 
investigated extensively. A principal advantage of using 
such heterostructures results from the ability to tailor the 
electronic and optical properties of the structures for 
realizing a potentially vast array of high-performance 
electronic and optoelectronic devices. To fully under- 
stand and utilize the properties of these nanometer-scale 
heterostructures, it is necessary to develop formalisms for 
studying confinement effects as well as picosecond and 
sub-picosecond processes. It has been known for many 
years that the scattering by polar-optical-phonon modes 
is an important energy-loss mechanism for electrons in a 
wide variety of III-V semiconductor devices. However, 
effects of confinement on these phonon modes have been 
investigated extensively only in the past several years. 

In recent years, a number of models has been put for- 
ward to explain electron-optical-phonon interactions in 
reduced dimensional systems. They can be broadly 
classified in two categories: macroscopic1-9 and micro- 
scopic.10-12 Macroscopic models ignore the effect of in- 
dividual layers of atoms but they have the considerable 
advantage of making the interaction calculation very sim- 
ple. Among these macroscopic models are the dielectric 
continuum model1-5 (slab model, which uses purely elec- 
trostatic boundary conditions), hydrodynamic model,7 

hybrid model,8 and a recent dispersive continuum treat- 
ment of Nash.9 In some parameter regimes, these models 
are fairly accurate and provide good estimates of energy- 
loss rates. However, scaling of the electron-optical- 
phonon interaction with diminishing device length 
presents a serious challenge to the accurate use of such 
models. As a result, there has recently been an increasing 
need for more rigorous analysis and detailed knowledge 
of electron-optical-phonon interactions in reduced di- 
mensional systems. This has been the main motivation 
for the emergence of ab initio microscopic models.12 

Though such models provide the most accurate analysis 

of the structure, they have not been used extensively. 
This can be attributed to the fact that the ab initio micro- 
scopic analysis involves very arduous and time consum- 
ing first-principle calculations of lattice dynamics13,14 

rather than employing adjustable parameters.13-17 

Precise ab initio calculations of force constants at the 
interface may not be essential for most of the heterostruc- 
tures except those involving extremely thin layers. It is 
well known that even a simple linear-chain model with 
nearest-neighbor force constants can predict the zone- 
center LO-phonon frequencies in a SL with a reasonable 
accuracy except in the cases where layers are single 
monolayer thick. Such an approximate model is based on 
the assumption that atomic-force constants at heterojunc- 
tion interfaces are identical to those of the bulk or of uni- 
form pseudomorphic layers. In a qualitative analysis of 
the effect of varying force constants at the heterojunction 
interfaces of a strained layer, short-period, GaAs/GaP 
SL with two monolayers per SL layer, it was also found 
that frequencies of the confined phonon modes are only 
weakly dependent on the variations in the interfacial 
force constants." The variation in interfacial force con- 
stants by values as extreme as 10% results in less than 
about a 2% change in the frequencies of confined phonon 
modes. It should be noted that as a practical matter, 
changes in the frequencies of the confined LO-phonon 
modes will be considerably less than 2%, since in most 
SL's and QW's the ratio of the number of bonds at the in- 
terfaces to the number of bonds one or more monolayers 
away from the interfaces is less than that for the case 
where each layer is two monolayers thick. 

Based on the results of Ref. 18, as well as on support- 
ing observations from other investigators,19 we have for- 
mulated a simplified microscopic model which facilitates 
the accurate modeling of confined and interface phonons 
without ab initio calculations of force constants. The 
valence-shell model developed by Kunc and Nielson for 
bulk20 has been extended for the SL/QW structures. In- 
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terpolation of the force constants at the heterointerfaces 
and a periodic-boundary condition have been applied as 
suggested by Yip and Chang.15 The calculated phonon 
dispersion and atomic displacements have been used 
to derive the interaction Hamiltonian and the 
electron-optical-phonon scattering rates in SL/QW het- 
erostructures. As will be demonstrated below, this 
simplified model provides an excellent approximation to 
the fully microscopic model. As a specific example in 
this study, we consider GaAs/AlAs SL/QW structures 
grown in the (001) direction. 

The dispersion relation can be obtained from the 
dynamical matrix constructed using our modified shell 
model. Three types of interactions are included: the 
core-to-core (<!>*) potential, the shell-to-core (4>r) poten- 
tial, and the shell-to-shell (<t>s) potential. The corre- 
sponding dynamical matrices are20 

Ra0UJ',q)= 2 *&/^yVV<H*'.;>-*''..n] , 
/-/' 

SaßVJ',<i)= 2 *&/-/',;,/Vq'[z<'J,-I< -*/■./>] 

(i) 

(2) 
i-r 

Tae(jJ',q)= 2 *&'-rjj'te'vww-rn t      (3) 

where ;' (/') denotes the atom in the cell and its type, / 
(/') represents the unit cell, z(/,y) [zil'J')] is the position 
of the yth (/th) atom in the /th U'th) cell, and a,ß 
denote the direction. Along with these matrices, we also 
need to use "effective" shell-shell interactions as,20 

*adJ>J'> q)=sai>ü>j", q) 

+&affijr[Kj + T^ijJM-S^UO)] , 

(4) 
where K} represents the internal core-shell spring. The 
equation of motion can be found using the following ma- 
trix equations: ™ ,20 

a 23fu=(Ä -ZBZ)u+(T-ZBY)w , 

and 

0=(T+-YBZ)u+(L-YBTm , 

(5) 

(6) 

where M, Z, Y, and B are matrices of masses, ionic 
charges, shell charges, and the real part of Coulomb in- 
teraction, respectively, as specified in Ref. 20. Here u 
and w stand for the amplitudes n(q) and w(q) of the core 
and relative-shell displacement, respectively, which may 
given as 

uvaUj)=uv
a(j,q)exp[^icov(q)t+iq-zUj)] , (7) 

and 

wZ(Ij)=wZ(j,q)exp[-icov(q)t+iq-z(Ij)] , (8) 

where v represents the phonon mode index. From Eqs. 
(5) and (6), it is clear that the eigenvalue problem reduces 
to 

[C(q)-a2I]e=0 , (9) 

C(q)=M-xn[(R-ZBZ)-{T-ZBY) 

x(A-rar)-1 

X(T+-YBZ)]M-l/2 .  (10) 
In a bulk zinc-blende structure, this equation results in 

six .eigenvalues, a^ and six eigenvectors, e,, for a given q. 
The corresponding phonon-dispersion relations and dis- 
placements are obtained directly from the expressions 
given above. The results are essentially the same as those 
calculated in a simple linear-chain model with nearest- 
neighbor force constants.  The long-range Coulomb in- 
teraction turns out to be less important because its force 
range is effectively reduced and its effect is only to slight- 
ly modify the nearest-neighbor and next-nearest-neighbor 
force constants.16 The parameters used in this study for 
three types of interaction [i.e., R, S, and Tin Eqs. (l)-(3)] 
are as listed in Table I; these parameters yield an excel- 
lent description of bulk-phonon characteristics for both 
GaAs and AlAs. All the other required parameters can 
be found in the literature. 11,15,16,2° Extension of this ap- 
proach to a SL is rather straightforward. In a SL grown 
in the (001) direction, the symmetry consideration along 
the x-y plane is maintained, while the translational period 
in the z direction needs to be modified. We define a SL 
unit cell L along the z direction which consists of n unit 
cells of each material and a SL wave vector q,. Hence, 
along z direction all summations need to be performed 
over all unit cells of the SL cell. Interactions up to the 
second nearest neighbors are taken into account.   As 
mentioned before, the bulk parameters are used in each 
layer except at the heterointerfaces where the interpolat- 
ed force constants are adopted. The resulting dynamical 

. matrices provide all of the SL eigenfrequencies and eigen- 
vectors for phonon modes. 

Figure 1 shows the phonon-dispersion relation for a 
(001) oriented (GaAsJ^AlAs)», SL along the in-plane 
(100) direction and also as a function of angle 9 between 
the direction of wave vector q and the in-plane direction 
for vanishingly small q\ 6 ranges from 0 to ir/2. Two 
clearly denned GaAs-like and AlAs-like frequency ranges 
are apparent in Fig. 1. Along with LO and TO modes, it 

TABLE I. Converted parameters used in this study for the 
three types of interaction [i.e., R, S, and Tin Eqs. (1M3)], A, B, 
Cl, £1, £1, F\, Cl, Dl, El, and F2 are as denned in Ref. 19 
and determined by fitting the bulk GaAs and AlAs phonon- 
dispersion relations. 

with 

Converted parameters 
GaAs AlAs 

R S T R S T 

A -19.67 -24.92 -19.67 -20.13 -23.87 -20.13 
B -4.44 3.31 -0.847 -4.31 3.39 -0.892 
C\ 0.817 1.034 0.817 0.799 1.011 0.799 
D\ -0.736 0.933 -0.736 -0.801 0.933 0.801 
E\ -0.550 -0.697 -0.550 -0.610 -0.701 -0.610 
F\ 1.942 2.461 1.942 2.42 3.643 2.42 
C2 0.817 1.034 0.817 -0.799 1.011 0.799 
D2 0.736 -0.933 -0.736 0.801 -0.933 -0.801 
El 0.550 -0.697 -0.550 0.610 -0.701 -0.610 
Fl 1.942 2.461 1.942 2.42 3.643 2.42 
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FIG. 1. Phonon dispersion of a (OOD-oriented 
(GaAs)2o/(AlAS)2o SL along the in-plane direction and as a 
function of angle 0 between the direction of wave vector q and 
the in-plane direction for vanishing small q. 

should be noted that the two "AlAs-like" principal 
modes and two "GaAs-like" principal modes take the 
limit of the well known "interface modes" of the dielec- 
tric continuum model over a portion of the domain of 
Fig. 1. Another feature of interest is the anticrossing of 
the modes in the right-hand panel (i.e., angular depen- 
dence).13 (Similar anticrossing characteristics of the 
modes have been observed in Refs. 8 and 9 as well.) 
Compared to the results from the ab initio approach,12 it 
is clear that our simple microscopic model can describe 
detailed characteristics of phonon dynamics accurately at 
the current dimension. As the layer thickness decreases, 
however, the accuracy of our model may suffer due to the 
assumptions made for the interface force constants. As 
an indication for validity of our model, the LO- 
phonon frequencies have been calculated for the 
(GaAs)m/(AlAs)„ SL's with m=n ranging from 1 to 4. 
In this comparison, our results match well with the ob- 
served LO-phonon frequencies21 for m =n >2 (within 3 
cm-1). For the monolayer case, the agreement between 
the experimental data and our microscopic model is not 
as good, but it is considerably better than those calculat- 
ed by using the simple linear-chain model.21 To study 
this case accurately, one will have to employ first- 
principle calculations using ab initio calculations at the 
heterostructure interface. Nevertheless, our model 
should provide excellent results for the great majority of 
device applications since layer thicknesses generally 
exceed one monolayer. 

The Hamiltonian for the polar electron-optical- 
phonon interaction in a single QW can be found from the 
potential given as12 

«,v,ff, 

fri»£<*i> 

Xe -(«.li-i .1) 

■u£(q,,)sgn(z-z„) 

with 

Uv=- 2iyo 2N0av(qt) 

1/2 

(11) 

(12) 

where e* is effective charge (2.07|e| for GaAs and 
2.17|e | for AlAs), n ranges all the N0 lattice points in the 
normalization volume, and ftg is the area of two- 
dimensional unit cell. Based on the Fermi golden rule, the 
scattering rate for the electron -optical-phonon interac- 
tion can be obtained as 

my)-(2ir/#»|</Ur|/>|28<JE,
/-£l) , (13) 

where / and / denote the initial and final states of the 
crystal, respectively, and H is the interaction Hamiltoni- 
an given by — e<f>, where e is the electron charge and <f> is 
the electrostatic potential associated with the lattice vi- 
bration as given above. Accordingly, 

r..(k )=2&L 2 |Giy(g„,v)|2(JV+i±±) 
*:,. 

xS 
#Jfc2    #k »2 

2m*      2m* 
=FA»* (14) 
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FIG. 2. Scattering rates by electron-optical-phonon interac- 
tion as a function of electron energy in a GaAs/AlAs single QW 
structure with a 20-monolayer GaAs well at 300 K. The results 
in (a) present the intrasubband transition rates of the lowest sub- 
band (1 -— 1), while the data in (b) show the intersubband transi- 
tion rates from the second lowest to the lowest subband (2—<• 1). 
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where Äa*=fc)y(g,1)±(£/-£,.) and *,**;±9|.  Also, 
the form factor Gy is given by 

<ty*|.v>» /;!(z)gj(z)<t>(z)dz , (15) 

where f, and £,- are the electronic envelope functions for 
subbands i and j, respectively. <j> is the potential associat- 
ed with the quantized phonon modes. For intrasubband 
(i =j) scattering, Gy is nonzero only for phonons with 
symmetric potentials and modes of opposite parity do not 
contribute. For the intersubband scattering, <?,-, is 
nonzero for only the modes having opposite parity. 

Figure 2 shows the calculation of the scattering rates 
for the polar electron -optical-phonon interaction based 
on our method. A GaAs/AlAs single QW structure with 
a 20-monolayer GaAs well is considered for the 1-*1 
(intrasubband) and 2-*l (intersubband) transitions by 
phonon emission at 300 K. Electronic envelope functions 
are obtained from the solutions of the Schrödinger equa- 
tion within the effective-mass approximation. For pur- 
poses of comparison, Fig. 2 also depicts the correspond- 
ing rates as obtained using the ab initio calculation12 and 
the dielectric continuum model. It is observed in our cal- 
culation that for intrasubband scattering, the lowest- 
order and highest frequency, ©LOI, confined mode is the 
most dominant mode and will dominate over all higher- 
order modes; similarly, for the case of intersubband 
scattering, a^j is the mode which provides the max- 
imum contribution to the scattering strength. Interface 
modes also provide sizable contributions. These observa- 
tions and the scattering rates by our microscopic model 
are in excellent agreement with the results from the ab in- 
itio calculation. It is also evident from the figure that the 
dielectric continuum model overestimates the scattering 
rate only slightly in this structure (i.e., 20-monolayer 
QW), as compared to our model. 

In Fig. 3 we have studied the 1 -*• 1 and 2-» 1 scattering 
rates for different QW widths. The general trend in both 
intrasubband and intersubband scattering is an increase 
in the scattering rate with diminishing well width d; how- 
ever, the rate of increase for the intrasubband scattering 
case is much higher than that for the intersubband case. 
The intersubband scattering rate increases by only 10% 
for the whole range of well widths.   Surprisingly, the 

FIG. 3. 1 -+1 and 2-» 1 scattering rates as a function of QW 
width at 300 K. The electron energy is fixed at SO meV. 

macroscopic approach shows an excellent agreement 
with the microscopic treatment for well widths as small 
as 25 Ä. As the width of the well is reduced further 
beyond the range of validity of continuum approxima- 
tions, the agreement suffers slightly, but still it is well 
within .the acceptable range. We have plotted the inter- 
subband scattering rate for well widths as small as 19 A. 
For smaller well widths, the well has only one bound 
state. There will be a quasibound state outside the well 
which will contribute to the scattering rate. Though not 
explicitly shown, the intersubband scattering rate will 
drop off when the well width becomes smaller than re- 
quired to maintain at least two bound states. As shown 
in Ref. 8, the intrasubband and intersubband scattering 
rates calculated using the hybrid model are also close to 
those predicted by the dielectric continuum model. 
Hence we expect that the scattering rate calculations 
from our microscopic model should form a good agree- 
ment with the corresponding results obtained using the 
hybrid model. 
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A generalization of the three-dimensional Fröhlich hamiltonian for a polar 
semiconductor is presented which describes the interaction between charge carriers of a 
zero-dimensional electron gas and longitudinal optical (LO) phonon modes confined in 
three spatial dimensions. This hamiltonian is used to calculate the scattering rate of 
electrons by LO phonons in a GaAs quantum box which is free-standing in vacuum. 
The suppression of scattering through a phonon bottleneck effect is discussed in terms 
of the selection rules. 

1. Introduction 

The progress in epitaxial growth and microfabrication 
techniques in recent years has motivated studies of low 
dimensional semiconductor structures such as quantum 
wells, wires and dots.1'12 As a result of their possible 
application in microelectronic devices, these structures have 
been the subject of extensive theoretical and experimental 
research. An important aspect to take into account is the role 
of electron-phonon interactions in transport pnenomena. In 
polar semiconductors such as GaAs. the interaction of 
electrons with longitudinal optical (LO) phonons is a primary 
energy loss and scattering mechanism which dominates the 
carrier mobility. To optimize electrical transport properties 
of devices one generally wants to enhance carrier mobility. 
Accordingly, several researchers have suggested designs of 
low dimensional structures which lead to suppression of 
optical phonon as well as other types (e.g., ionized 
impurities) of scattering.6- xy M On the other hand, in 
proposed quantum wire and quantum dot lasers it is actually 
desirable to increase the effectiveness of optical phonon 
scattering in order to increase relaxation of electrons to the 
ground state and improve photoiuminescence efficiency.li 

Studies of electron-LO phonon interactions have been 
carried out in single and double heterostructures16 as well as 
in quantum well, wire and dot structures.'in Bockelmann 
and Bastard17 have calculated LO and LA phonon scattering 
in these three types of structures including effects of 
quantum confinement of electrons as well as broadening in 
the zero-, one-, or two-dimensional density-of-states. Other 
researchers have begun to address the effects of dimensional 

•Permanent address: Dpto. de Ffsica de Materiales, Facultad 
de C.C. Ffsicas. U.C.M.. 28040 Madrid (Spain). 

confinement on the phonon modes and the resultant electron- 
phonon hamiltonian. Shigekawa et al." have pointed out a 
noticeable difference between the scattering probability of 
confined and bulk-like modes on electron transport in 
semiconductor superlattices. Similar results have been 
found in quantum wires." However, to our knowledge, the 
effect of longitudinal phonon confinement in quantum dots 
has not oeen reported previously. 

In this paper, we present a calculation of the zero- 
dimensional electron-LO phonon scattering rate in a GaAs 
quantum box which is free-standing in vacuum taking into 
account the confinement of the carriers as well as the 
confinement of LO phonons treated within a dielectric 
continuum framework.'6 The mathematical procedure used 
to derive the zero-dimensional Fröhlich hamiltonian is based 
on a treatment used for the quantum wire problem reported 
previously.'9 In Sec. 2 the expression for the generalized 
Fröhlich hamiltonian is obtained. In Sec. 3 it is used to 
calculate the scattering rate of carriers in a zero-dimensional 
electron gas by confined LO phonons. Discussion of the 
results is contained in Sec. 4. 

2. Frölich Hamiltonian for LO Phonons Confined 
in a Quantum Box 

To obtain the Fröhlich hamiltonian describing the 
interaction between the confined LO phonons and electrons 
of a zero-dimensional electron gas. the three-dimensional 
Fröhlich hamiltonian for scattering in a bulk semiconductor 
is subjected to the boundary conditions requiring that the LO 
phonon electrostatic potential vanishes at the heterostructure 
interfaces.'6 The three-dimensional Fröhlich hamiltonian, 
Hft     , can be written as 

0749-6036/93/040481 *06S08.00/0 S 1993 Academic Press Limited 
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where the factor B(m, n, p) is given by 

(2.1) 

where a(k) and a'(k) are, respectively, the annihilation and 
creation operators for bulk LO phonons. k is the three- 
dimensional phonon wave vector, V is the volume of the 
crystal and a is the Fröhlich coupling constant defined as 

/, *.,„.((-) .(-).(!-) 1/2 

e_   E. 

1/2 

(2.3b) 

and the phonon annihilation operators for the zero- 
dimensional confined modes are defined as 

(2.2) 

In the above equation, ti(i)Lo is the LO phonon energy and 
e_ E0 are, respectively, the high frequency and low 
frequency dielectric constants. Writing the sum over k in 
Eq. (2.1) as a sum over the positive values of k„, ky and kz, 
expanding all the exponentials e **«*. e **»* ande**»1 

and taking k, = ±mit/L, ky = ±nn/L and k2 = ±pjr/L to 
ensure that the electrostatic potentials associated with the 
confined modes vanish at x = ±L/2, y = ±U2 and z = ±L/2, 
where L is the size of the quantum box. results in 

A_|k)± = ^(A4k,)± + A+(-kjj 

A + .IMt = 4(A*lk"l±-A*i-k»l±) 

A. + |k)± = ?L(A.|kJ±+A.f.k1)±) 

Hft    =2l^yV III 
m-1.3.. n-1.3.. p-1.3.. 

Jrrntxl     Injtyl 

B|m, n, p) 

pitzj 

^(A_(k)++Af_|-k)J 

III 
m-2.4.. a« 1.3.. p-1.3.. 
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B(m, n, p) 

m-1.3.. n-2.4.. p-1.3- 

III 
m-2.4.. n-2.4.. p-1.3.. 

B|m, n, p) 

,t .  .TOKX su1— 
B(m, n. p| 

m-1.3.. n-1.3.. p-2.4.. B(m, n, p| 

B|m. n, p) 

Uoc] .Jmtyl Jpjtz 

III 
m-2.4.. n-1.3.. p-2,4.. 

ra-l J.. n-2.4.. p-2.4.. 

. luUCX 

* I  I  I 3 
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pxz 

B(m, n, p) 
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(2.4b) 

(2.4c) 

(2.3a) 
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A..|k|t-^(A.|kj±-A.(.kj±). 
(2.4d) 

The operators A+ (k^).,. can be expressed in terms of the 
original three dimensional phonon annihilation operator a(k) 
as in Ref. 19, 

A*lk«)± = 7=[«±|kvky) + il±lk»--kyl] 

A-Nt-7y[»t|k..kJ-»t(kr-k»j| 

(2.5a) 

(2.5b) 

where a± (k^ k ) are given by 

I a.|kT, kj-^[«|kp kr M + .fc„ kr -k,)] 

»■lk«-M-7f[«(k»'krk»l-«(k«-kr-kj]- 

(2.6a) 

(2.6b) 

Taking the hermitian conjugates of Eqs. (2.4)-(2.6) 
yields analogous expressions for creation operators. The 
zero-dimensional Fröhlich hamiltonian of Eq. (2.3a) 
describes the interaction of an electron and the LO phonon 
modes characterized by standing waves in the three 
directions x, y and z. Within a microscopic approach, the 
electrostatic potentials associated with the confined modes 
are nearly zero at the heterostructure interfaces.20- 2I 

Therefore, the approximation used here that electrostatic 
potentials vanish at the box boundaries x = ±L/2, y = ±L/2 
and z = +L/2 is reasonable. 

3. Electron-Confined Phonon Scattering Rates in a 
GaAs Quantum Box 

In the present calculation, it will be assumed that the 
quantum box forms an infinitely deep potential well, so that 
the wave function for electrons will be a product of cosine 
and sine functions. For the case of equal parity in the x, y 
and z directions, the electronic wave function is only a 
product of cosine (sine) functions for odd (even) parity; i.e.. 

HCMTW^M?] ,„,, 
and 

•>-eR?)*tel*te) *>•>• 

1=1,3.5.. 

(3.1a) 

= 2,4,6.. 

(3.1b) 

where the factor (2/L)in is a normalization constant, L is 
the size of the quantum box, and -\J1 Sx.y.zS +L/2. The 
corresponding electron energies for the different states are 

E|i.j,l| = 2m* i>\i4 (3.2) 

The assumption of an infinitely deep potential well leads to 
simple scattering matrix elements. A more realistic treatment 
would employ finite confining potentials; however, this 
requires the use of extensive numerical evaluation and we 
have found that including this effect leads to relatively small 
corrections in the energies (see Sec. IV). 

Using the Fermi-Golden rule, the probability of making 
a transition from initial electronic state Kjl> with energy 
E(i,j. I) to final electronic state li'jT> with energy 
E(i', j\ I') is 

N   2«|   I'tfj \ W\./ = ±JL|MW| cjgr.j'.n-Eli.j.flfhaiuj) 

(3.3a) 

where the upper sign denotes phonon emission, the lower 
sign denotes absorption and the matrix element is given by 

M!l|-^,jM';Nk + I±i|HgD,|i.j.l;Nk + i±iy 

(3.3b) 

The phonon occupation number is taken as Nk + I for 
emission and as Nk for absorption. As a consequence of the 
conservation of energy in the scattering process, at least one 
of the integers of the final electronic state (i\ j\ I') is smaller 
(larger) than any of the integers of the initial state (i, j, 1) for 
the process of emission (absorption) of a phonon. Inserting 
the expressions for H^'"0' and the electronic wave functions 
into Eq. (3.3b) and taking into account the orthogonality of 
the cosine and sine functions, it is evident that the matrix 
elements are nonzero only when the initial and final 
electronic states have the same parity in the x. y and z 
directions: i.e.. only transitions with equal parity between 
the integers (i, i), (j. j') and (I, I) are allowed. Rewriting 
the Eq. (3.3b) for the case in which all integers are odd, we 
obtain 

'       h   v III 
1-1.3.. n«l.3.. p»l." 

.    Phn.n.pfl 
-j   B|m.n,p|j 

JNk + i±i]c{E!i,.j-.r|-Eii.j.i|±hü)lJ 

(3.4a) 

where P(m. n. p) is the overlap integral 

L/2 f9      L/i 

P|m. n, pi - I       dx (1) cosjip.) co^j C0^E.\ 

J U2 
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J in 

• I   ^LH^r^rr-tr 
J U2 

(3.4b) 

in which the dependence on initial and final electronic states 
has been suppressed. Similar expressions can be obtained 
for even integers by replacing the cosine functions by 
sine functions in Eq. (3.4b) and by expanding the sum with 
suitable integers in Eq. (3.4a). For a given transition lijl> 
—*■ lijT>, the phonon modes which give the dominant 
contribution to the overlap integral are m = i, i', i±2. i'±2; 
n = j, j', j±2. j'±2 and p = I, I', l±2, l'±2: any other modes 
yield contributions that tend rapidly to zero with a power 
law. Therefore, they have not been taken into account 
in the evaluation of P(m. n, p). 

Conservation of energy as imposed by the delta function 
in Eq. (3.4a), requires that E(i', j', I') - E(i, j, 1) ± ho>LO = f>, 
i.e.. 

■hit (3.5) 

This condition implies that each transition lijl> —> li'jT> is 
characterized by a specific value of L, the size of the box. 
Transforming the argument of the delta function as in Eq. 
(3.5), the scattering rate results in 

32m*a 
2r 

2m*ci), 
•(kVMrVMrVl) 

U) 

1/2 

xA ^44 (3.6) 

where A is a constant arising from the sum. In Table 1, the 
scattering rates for several interband transitions to (from) the 
bottom band with emission (absorption) of LO phonons in a 
GaAs quantum box which is free-standing in vacuum is 
shown with the specific value of L that characterizes each 
transition. The values of the constants m* , <DL0 and a to 
calculate W are taken from Ref. 22 and the lattice 
temperature is assumed to be 3(X) K. 

Emission 

Transition W^IO'V) 

|I3U>)—»mi> 2.51 

TABLE 1 

L(A) 

352 

Absorption 

Transition 

HU>—►( I3ll>) 

W(xlO'V) 

5.77 

{I331>)_»IHI> 1.71 

I333> —»I111> 1.02 

498 I111>-»(I331>) 3.93 

610 II!I>—* I333> 2.33 

{M35>)-»llll> 

(151 !>)—>• Ml 1> 

(I533>)-»I!1!> 

(1551>> —»> M11> 

1.20 

1.69 

0.81 

0.91 

704 

610 

787 

863 

Illl>—»(I13S>) 

llll>—»(I511>| 

I1I1>-*(I533>) 

lllt>—»(I55l>) 

2.76 

3.88 

1.86 

2.09 

I555> —»llll> 0.86 1056 llll> -»I555> 1.56 

Table 1.- Scattering rates for several interband transitions involving emission (absorption) of 
LO phonons in a GaAs quantum box. The scattering rate for each transition is calculated for 
different values of box size L. The expression (lijl> ) refers to all distinct states which correspond 
to permutations of the quantum numbers i, j and 1; for example, ( I3U> } refers to 1311>, U31> 
andlll3>. 
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4.   Discussion 

From the above results, two interesting features are 
predicted in the case where the confining potential for 
electrons is approximated as Being infinitely deep. Firstly, 
the intraoand transitions are forbidden for a box of cubic 
geometry (L, = Ly = Lz = L) since the initial and final 
electronic states have the same energy and no emission 
(absorption) of LO phonons can occur. This process 
involves the excess (loss) of an amount of energy equal to 
the energy of the phonon. tKOLo- Conversely for a 
hexahedral box (L, * Lv * L7), the intrabana transitions are 
allowed only if a speciaf condition among L,, Ly and L, is 
imposed by the conservation of energy. This feature has not 
appeared in quantum wells and wires, where the 
intrasubband transitions are allowed independent of the 
lengths of the sides in the confining dimensions. I-4-5 

Secondly, the imerband transitions for a quantum box of 
cubic geometry (the case studied here) are characterized by a 
particular value of L; i.e.. a given transition is only allowed 
for those cubic box dimensions satisfying Eq. (3.S); for 
other box sizes, the transition is forbidden. However, sets of 
transitions from (to) electronic states of the same band to 
(from) electronic states of the bottom band are characterized 
for the same values of L and W as shown in Table 1. These 
striking features are a consequence of the near energy 
monochromaticity of the LO phonons and the discrete 
spacing of the electronic energy levels. This so-called 
"phonon bottleneck" effect has been used previously to 
explain the low energy relaxation rate of excited states in a 
quantum box through phonon emission. It has been pointed 
out that small variations of the lateral confinement 
dimensions reduce significantly the relaxation rate.8 The 
suppression of scattering by LO phonons due to the above 
selection rules would limit tne photoluminescence efficiency 
in proposed quantum dot lasers. Recently, multiphonon 
processes involving LO and LA phonon scattering have 
been invoked as a possibility to increase tne effectiveness of 
the scattering.,3 We expect that tne effects of the confined 
LO modes derived in this paper could be incorporated into 
such a multiphonon calculation in a straightforward manner. 

On the other hand, for a given transition from (to) the 
bottom band, the transitions involving upper energy levels 
are associated with smaller scattering rates and larger box 
sizes. Comparison between the values in Table 1 and the 
scattering rates obtained in Ref. 4 for a GaAs quantum wire 
(extrapolation of the values in Fig. 6) reveals similar 
strengths for the eiectron-LO phonon interactions. 

Although the results listed in Table 1 should be 
interpreted as approximate since in this calculation the 
electronic states are assumed to be confined in three 
dimensional infinitely deep potential wells, it is expected that 
the effect of this approach on determining the real energy 
levels would be small. An estimation of the two first energy 
levels in a GaAs quantum box with L = 352 A and 
embedded in AlAs barriers yields values within 10 % of 
those obtained for the free-standing case. A value of 0.96 
eV corresponding to the conduction-band offset relative to 
the GaAs band edge23 was taken for the well potential 
height in the epitaxial growth direction. Smaller variations 
will be obtained for boxes with larger dimensions. 

Investigations in quantum wells and wires have shown 
that another important scattering mechanism of electrons is 
the scattering by interface (IF) phonons.3"5-'* In quantum 
wires, it has been pointed out that the scattering rates of IF 

phonons are comparable in magnitude with those of LO 
phonons as the dimensions of these structures decrease.4-3 

On the other hand, studies of a GaAs quantum wire have 
shown the relevant roie of the embedding material on the 
scattering process by IF phonons. Scattering rates are larger 
when the wire is free-standing in vacuum than when it is 
embedded in a polar semiconductor (e.g., AlAs).4 In the 
light of these results, investigations of a GaAs quantum dot 
embedded in different materials seem to be crucial for the 
photoluminescence efficiency problem. Scattering by IF 
phonons could yield significant contributions along with the 
multiphonon processes previously reported15 to enhance the 
effectiveness of the scattering. Microscopic calculations of 
IF modes in one-dimensional quantum box arrays indicate 
very substantial dispersion - which would be expected to 
reduce size sensitivity of phonon scattering.21 
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ABSTRACT 

i ThC /"•* scattcrinS rate of electrons in type-II superlattices by optical-phonon emission is 
calculated. The tight binding method for electronic band structure and the dielectric continuum 
model for phonons are used. The relative strength of scattering due to different phonon modes 
is examined for varying superlattice dimensions. The scattering rate is highest when the energy 
separation between the r and X levels is smallest, and decreases quickly as the separation increases. 
It is found that the strongest scattering rate is due to the emission of AlAs confined modes. 
Changing of parity with layer thickness and its effect on scattering are discussed. 

1. INTRODUCTION 

Recently, there has been considerable interest in hot carrier dynamics in heterostructures. 
One important issue in this area has been the relaxation of photoexcited carriers in heterostruc- 
tures from higher energy subbands to the lower ones. This process has been studied extensively 
both experimentally and theoretically because of its fundamental physics and for possible device 
applications.1-« Most of the work up to now hasten on type-I heterostructures where the bandgap 
of one material is entirely nested within the gap of another material. In this structure, electrons and 
holes are both localized in the same layer. On the other hand, in the so-called type-II superlattices, 
the holes are localized in one layer, whereas the lowest energy electrons are contained in the other 
layer. The well studied AlxGai_xAs/GaAs superlattices can be made type-II by appropriately 
choosing the layer thicknesses and alloy composition. For example, the GaAs/AlAs superlattices 
with thick AlAs layers are known to be type-II for GaAs layer thicknesses less than or equal to 
35 A (12 monolayers).7 Type-I to type-II transitions can also be achieved by application of external 
forces .such as an electric field or hydrostatic pressure. In the case of type-II structures, the lowest 
conduction band level is not in the GaAs but in the A^Ga^As layer. In type-I heterostructures, 
electrons photoexcited from the valence band to the conduction band relax to lower energy levels 
within the same layer. However, in type-II structures, the electrons excited to a direct-gap energy 
Zur P m °ne kyer then <^ relax to an indirect-gap energy level (X) in the adjacent layer. 
This is a very interesting case because electron relaxation happens with real-space transfer  This 
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orocess, which is normally forbidden, is now possible due to the mixing of T and X states by the 
superlattice potential and relaxation of momentum conservation due to interface disorder (lateral 
mixing). Several experimental results related to T-X transfer are available in the literature.4-8 In 
spite of the spatial charge transfer, the relaxation rate can be very high. Experimental evidence 
has been presented that T-X electron transfer occurs by the emission of long-wavelength optical 
phonons.6 However, a detailed theoretical analysis for the T-X transfer in type-II structures has not 
vet been given. In this paper, we calculate the T-X scattering rate due to optical phonon emission 
using a realistic band structure model. 

2. FORMULATION 

It is well known that the electron-phonon interaction in low-dimensional systems is altered 
strongly due to the confinement of the carriers and the confinement of the phonons. Usually, a 
single-band, spherical effective-mass is used for the description of the wave functions of confined 
carriers. It is commonly assumed that each of these confined states is derived from bulk states of a 
given symmetry (e.g. T, X or X) only, and levels derived from different bulk states do not interact 
with each other. However, in a superlattice, due to broken periodicity in the growth direction 
(taken as the z-direction in this study), momentum in this direction is not conserved and bulk 
states of different symmetry can mix, i.e. the confined states are made of more than one bulk 
state. Due to this mixing of T and X states, the electronic band structure is more complicated 
in type-H superlattices. Therefore, the envelope-function approximation, which works very well 
in many cases, is not suitable in this case. In type-H superlattices, a model for band structure 
that can handle the mixing between different valleys is needed. Several such methods have been 
employed in the literature.8-12 In this study, an empirical tight-binding method with an «p3 basis 
is used for describing the electronic band structure. In the calculation, first and second nearest 
neighbor interactions are retained. The Tni-ri^g of the T and X valleys is intrinsically included 
in this model since the complete band-structure is described in the tight-binding method. The 
parameters used in the tight-binding calculation are taken from Ref. 8. These parameters were 
optimized to reproduce the highest valence band and lowest conduction band accurately. The 
parameters across an interface are taken as the average of the values from the two bulk regions. 
The spin-orbit coupling and camel-back features of the X band are neglected since these will not 
affect the T-X mixing. 

In a superlattice, the 6-fold degeneracy of the X valley is removed, with the formation of an 
Xx doublet having momentum along the growth axis, and an XS|V quadruplet, with momentum 
in the plane. The XXfV and L T"'™™* are not coupled to the T valley due to the conservation 
of lateral momentum. However, momentum in the z-direction is not conserved because of the 
discontinuities in the superlattice potential Therefore, only the T and X, valleys are coupled 
through this potential. Accordingly, out of all the X states, only the Xt states are mixed with the 
r states by the perfect superlattice potential, and, herein, the X-point will be used to mean Xt 

particularly. The X states in the plane of the interface (X*,y) are not coupled to the T states by 
the perfect superlattice potential However, these X states are mixed with the T states by interface 
disorder.12 Obviously, this effect will be more important for short period superlattices. Interface 
disorder effects are not taken into account in this study. 

For proper calculation of the electron-phonon scattering rates, the effect of confinement of 
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phonons should also be taken into account. It is well known that the vibrational modes in low- 
dimensional structures are different from those in the bulk. Microscopic lattice-dynamical models 
have been used with great success to model these phonon modes.13*14 However, using these models 
in the calculation of electron-phonon interaction requires intensive computation. Therefore, for 
the description of phonon confinement, the dielectric continuum (slab) model employing electro- 
magnetic boundary conditions is used because of its simplicity and reasonable accuracy.15-17 This 
model predicts the existence of LO modes for both layers and several interface modes due to the 
dielectric discontinuity between the two media. There is no dispersion of confined phonon modes 
in this model, and the frequency of each mode is taken as identical to its bulk value. In the di- 
electric continuum model picture, these modes are totally confined within an individual layer, and 
the phonon potential of one type of layer is identically zero in the adjacent layer. Hence, phonon 
potentials in each well do not interact with each other, and consequently, confined phonon modes 
in a superlattice are the same as the ones for a quantum well in this picture. 

Figure 1 shows a schematic drawing of the band-edge alignment of a type-H superlattice 
grown in the z-direction. The thickness and dielectric constant of material I (H) are denoted by 
d\ (dj) and 61 (62), respectively. The Hamiltonian for the electron-confined phonon interaction for 
the confined modes of material I is given by15 

«HI 

«n[i7Mr(z - nd)/di)/Jq^ + (mx/di)2,   nd < z < nd + du 

nd + di <*<(n + l)d, 

{sir 

0, 

m = 1,2,3,... . (1) 

Here, aiq (aq„) is the creation (annihilation) operator, and qj[ and p stand for the two-dimensional 
phonon wave vector and position vector in the x-y plane, respectively. Area in the x-y plane is 
denoted by A, N is the total number of unit cells, and n indexes the unit cells. The confined phonon 
frequency, u^ is taken identical to the bulk phonon frequency at zone center. The Hamiltonian 
for the confined modes of material II is given by a similar expression. The interface phonon modes 
in a superlattice, on the other hand, are modified due to the periodicity of the structure and the 
overlapping of potentials.18'16 In this case, the phonon potential extends over the whole superlattice. 
The resulting Hamiltonian due to interacting interface modes is very complicated. To simplify the 
calculations, in this work, we derive the Hamiltonian for interface modes only for the case of qx=Q. 
The phonon dispersion relations obtained with this condition are as follows: 

eitanh ( -^q\\d\\ + e2tanh ( ^ll^) = ° (2) 

for symmetric modes, and 

€Xcoth ( -?(!<*! J + e2coth ( 29||^2J = 0 (3) 

for antisymmetric modes. The Hamiltonian for the interface modes (with ?z=0) is, 
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( 

E,r   -   E(S)^[^(^+fete°AG'^)]",/!^,','(a'»+0,-'») 

cosh[q\\{z -(nd + <f1/2))]/coa/i(g||rfi/2)> nd < z < nd + du 

cosh[qü{z - (nd + dx + d2/2))]/cosh{qi]d2/2),   nd + d1<z<(n+ l)d. 

The scattering rate due to optical the phonon emission is calculated by using Fermi's Golden 
Rule. The temperature is taken to be close to 0 K and the phonon occupation number is taken 
to be very smalL The summations within the 2-D Brillouin zone are evaluated numerically.18 For 
simplicity, the interface phonon energy is taken as a constant in the energy conservation equation 
since the dispersion is small. For the calculation of the Hamiltonian, however, phonon frequencies 
obtained from the above given dispersion relations are used. 

3. RESULTS AND DISCUSSION 

In this work, a superlattice with M layers of GaAs and N layers of AlAs is studied. The energy 
levels at the miniband Tninimmn obtained from the tight binding calculation as a function of AlAs 
layer thickness are shown in Fig. 2. The GaAs layer was kept constant at 8 monolayers. The 
levels are labeled as T and X following the effective mass notation although each level is actually a 
combination of these two bulk states. Here, the superlattice states are labeled after the dominant 
one of the two bulk states forming them. As can be seen, the effect of changing the AlAs layer 
thickness is to make the energy difference, hence, the interaction between the lowest T level and 
the X levels vary. The parity behavior of states needs to be mentioned briefly because of the effect 
of parity on the overlap. In the superlattice, the electronic wave functions have definite parity only 
when the electron is at the miniband T""1"1™"1 or miniband maximum. The coefficients of the 
a (pz ) orbitals have the same (opposite) parity as the level itself.8 The initial state for the electron 
is assumed to be the bottom of the miniband, and the following discussion applies for i,=0. The 
parity of the Ti state is even, regardless of AlAs layer thickness. The parity of the X levels, on 
the other hand, depends on the number of AlAs monolayers. The Xi levels (*=1, 2,3,...) with odd 
(even) i have the same (opposite) parity as JV. The parity behavior of states is important because 
the states of opposite parity do not mix for ix=0. For kz £ 0, the electron states do not have well 
defined parity and all states ™i-r. This mixing, however, is much weaker than had their parities 
been the same. , 

Scattering rates due to emission of different phonon modes is shown in Fig. 3. The results pre- 
sented are the sum of contributions by all normal modes for a given type of phonon. In calculating 
the intersubband scattering rates, the electron is taken to be initially at the bottom of the lowest T 
subband. It then transfers to the lowest X subband by emitting an optical phonon. As is apparent 
from Figs. 2 and 3, the scattering rate is strongest when the T and X levels are closest in energy. 
Under this condition, the levels interact very strongly with each other and the T level has large X 
character. Therefore, the overlap between the initial and final states is large. This interaction and 
the resulting large overlap decreases rapidly as the energy separation increases. This is one of the 
two reasons for strong thickness dependence (other being parity) of the scattering rate as seen in 
Fig. 3. 
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As can be seen, for the most part, the AlAs confined modes are strongest, followed by AlAs 
Interface modes. The GaAs modes are weaker, with the GaAs confined modes being the weakest. 
This is due to the fact that the final state X\ wave function is strongly confined within the AlAs 
layers. Consequently, the overlap involving GaAs confined modes is very small. An interesting 
point to note about Fig. 3 is that the dominant phonon modes alternate between being even and 
odd. This is because the parity of the X level alternates as the AlAs thickness is changed by one 
monolayer each time. For even (odd) AlAs layer thickness, parity of the lowest X level is even 
(odd); hence, the even (odd) phonon modes are strong. The effect of parity can be also be observed 
at cross-over points where the T and X level energies become very close. From Fig. 2, it is seen 
that the two levels have almost the same energy for JV=5, but they do not Tnir and repel each 
other. This is because Ti and X\ have the opposite parity for this thickness. For other thicknesses 
where the two levels become close, however, they do repel each other because they have the same 
parity. This is the reason why the scattering rate for JV=19 is much stronger than JV=20. The 
energy separation between the V\ and X4 levels is actually smaller for JV=20 than it is for JV=19. 
However, as explained before, the parities are opposite. This results in strong (weak) tni-ring and 
scattering rate for the N=19 (iV=20) case. 

As is evident from Fig. 3 the interface modes become weaker as the AlAs thickness increases. 
This is similar to the case of type-I superlattices.3 The results obtained here can be compared 
with an experiment by de Paula et a/.,4 where the r to X transition rate via phonon emission was 
obtained by a time-resolved anti-Stokes measurement. For the case of M=8 and JV=14, they found 
the transfer time to be around 1 ps, which is in agreement with the rate calculated in this study. 
However, it is very difficult to make an exact comparison due to the nature of the experiment. 
Another point to note is that it was not possible in their experiment to determine whether intra- 
subband scattering was also involved. It should also be mentioned that there may be mechanisms 
other than optical-phonon emission for electron relaxation, e.g. carrier-carrier scattering, non-polar 
optical-phonon scattering and acoustic phonon scattering. Besides these TriTlnmUm«, interface 
roughness may cause additional scattering as well. In this study, only the transition from 1*1 to X\ 
is considered. Depending on the layer thickness, there may be more than one X level to which the 
r electron may transfer. 

4. CONCLUSION 

The T-X intersubband scattering rate due to phonon emission is calculated by using the tight 
binding method for electrons and the dielectric continuum model for phonons. As expected, the 
scattering is strongest when the levels anti-cross. Among various phonon modes, the strongest one 
is found to be the AlAs confined modes, the weakest being the GaAs confined modes. Scattering 
rate due to the interface modes are observed to get weaker with increasing AlAs thickness. The 
parity behavior of electron states and its effect on scattering are examined. The results obtained 
are in general agreement with the experiment. 
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(n-1)d + d-| nd + di          (n + 1)d 

n* Unit Cell  

Fig. 1.   Schematic drawing of the band-edge alignment of a type-II superlattice grown in the 
z-direction. 

N 

Fig. 2. Energy levels at the miniband minrmmn obtained from the tight binding calculation as 
function of AlAs layer thickness in monolayers. The GaAs thickness is constant at 8 monolayers. 
The discrete energy levels are marked as T (squares) and X (circles) to designate the dominant 
one of the two bulk states making up the confined state. 
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  AlAs Confined Modes 
 AlAs Interface Modes 
 GaAs Interface Modes 

GaAs Confined Modes 

N 

Fig. 3. Ti-Xi relaxation rate due to optical phonon emission as a function of AlAs layer 
thickness in monolayers. The GaAs thickness is 8 monolayers throughout. Scattering rates due 
to the GaAs confined phonon modes are very small and hard to distinguish in the figure. 
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ABSTRACT 

The Hamiltonian describing the deformation potential interaction of confined acoustic phonons 
with carriers is derived by quantizing the appropriate, experimentally-verified approximate eom- 
pressional acoustic phonon modes in a rectangular quantum wire. The scattering rate due to the 
deformation potential interaction is calculated for a range of quantum wire dimensions. 

1. INTRODUCTION 

Many proposed applications of mesoscopic electronic structures involve carrier transport at 
low temperature» and low carrier energies; frequently, the regime of interest is one where dimen- 
sional confinement modifies the phase space substantially. In this low temperature, low energy 
regime,1"6 acoustic phonons play an enhanced role in carrier scattering and may dominate over 
the scattering of carriers by optical phonons. Furthermore, in nanosrale structures it is possible 
that phase space restrictions may weaken or forbid optical phonon scattering processes that would 
tinffm»iiy AntnmaiL» in Wniv ■tuiftn—» Ja xeceut years, there has been an extensive literature on the 
role of dimensional confinement in modifying longitudinal optical (LO) phonon modes and their 
interactions with charge carriers in nanosrale and mesoscopic semiconductor structures (see, for 
example, Refs. 7-12 and the numerous papers referenced therein). However, there are relatively 
few treatments dealing with the role of dimensional confinement in modifying acoustic phonon 
modes and their interactions with charge carriers.3-* While there is an extensive literature on the 
theory of acoustic modes in conventional waveguides, resonators and related structures, few efforts 
have been reported to formulate a theory of acoustic phonons in nanoscalr structures where both 
phonon confinement and a quantum mechanical treatment of phonon normalisation are essential; 
Constantmon has, however, discussed the unnormalised acoustic phonon modes in a cylindrical po- 
lar semiconductor quantum wire.13 The need for such theoretical treatments has been underscored 
recently by experimental studies providing both direct and indirect3,4 evidence of the importance 
of acoustic phonon confinement in reduced dimensional electronic structures. 
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In this paper, by appropriately quantizing the acoustic phonon displacements we have obtained 
the correctly normalised expressions for acoustic phonon* confined in a rectangular quantum wire. 
There are no exact solutions for the complete set of phonon modes for a rectangular quantum 
wire; however, as for the case of LO phonon modes,10 the approximate modes presented in this 
work provide simple and useful expressions which are well suited for modeling the interaction of 
carriers with acoustic phonons. To investigate the effects of reduced dimensionality on the coupling 
between acoustic phonons and carriers, we have formulated the interaction Hazniltanian far the 
deformation potential associated with confined acoustic phonon modes in rectangular quantum 
wires. The resulting Golden Rule scattering rates are compared with those obtained from the bulk 
phonon modes. The technique used to quantise the acoustic phonons in a rectangular quantum 
wire is based on recent results14 for confined phonon modes in a free-standing """fnlf cylindrical 
quantum wire. In Ref. 14, the general procedure far quantising the amplitudes of acoustic phonon 
modes is also demonstrated for cylindrical quantum dots. 

2. QUANTIZATION OF COMPRESSIONS! ACOUSTIC PHONON MODES FOR 
A RECTANGULAR QUANTUM WIRE 

The compressianal acoustic phonon modes in free-standing rods of rectangular cross tfrtion 
have been examined both experimentally18 and theoretically18»17 by Morse in an trtwidtd study. In 
that research, Morse has derived an approximate set of compressianal acoustic phonon modes16»17 

which are found to accurately approximate the experimentally observed modes over a wide range 
of conditions.16 In particular, Morse has found that the approximate m«df derived by assuming 
separation of variables16»17 have simple analytical representations and provide convenient approx- 
imations for the rectangular geometry when the cross-sectional dimensions have aspect ratios of 
approximately 2 or greater. For smaller aspect ratios, it is necessary to turn to numerical wdntiont 
since exact analytical solutions for the enmpftMinn«! mrtmmüf plum/m m«^«. m » y+a^gwl«» •***,*. 
ture are not expressible analytically. In this account, we shall restrict our analysis to rectangular 
quantum wires having aspect ratios of cross-sectional «imi»n«inm« equal to 2. 

Following Morse,16 we consider a free-standing rectangular rod of infinite length in the s- 
direction having an x-directed height, 2a, and a y-directed width, 2d; the origin of coordinates m 
the x-y plane is placed in the geometric center of the rectangular cross section and the a-, y-, *- 
directed acoustic mode displacements are represented, respectively, by, 

«!   =   «(«,y)e*—), (1) 
*i   =   t,(*,y)e*r{*-*>, (2) 

«x   =   w(*,y)e**-«>, (3) 

where 7 = 2T/A, X being the wavelength, 7 is the »-directed free wavevector, and c is the phase 
velocity. Assuming Morse's form for the approximate separation-of-variables solution, the compres- 
sianal waves may be represented by, 

tt   =   {Asinkiz + BMink3z}co*(hy)t (4) 

=   {r-i4eoj*i* + Cco**az}«*n(Äy), (5) 
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y 1 to   =   i{—£-Aco*kiz + -(ij£ + hC)eoskis}eos(hy), (6) 

where 

*? + *?   =   72[(c/crf)2 -1], (7) 
*§ + *!   =   72[(c/e.)2 -1], (8) 

and the dilatations!, or comprrssional, sound speed, e^, as well as the shear, or transverse, sound 
speed, e„ are expressed in terms of the Lame* constants A' and ft: 

<£   .   (A' + 2M)/* (9) 
ej   =   H/P, (10) 

with p being the density of the medium. Substitution of Eqs. (4)-(6) into the conditions that the 
Za»7»c and Tn stress components -vanish at x = ±o and taking n = fcj = Äj 18>17 to approxi- 
mate the stress components as products of functions of x and y separately, yields a set of three 
simultaneous equations for the amplitudes A, B, and C: 

2Ah*inkia + Bksinkia+Ck2sinktfi   =   0, (11) 
-il(73 + fc2-i|)co«M + 2Si;1i3eos£3a   =   0, (12) 

2A(A*+72)juii1a + £(78 + a2-4!)jtn*,a   =   0. (13) 

When k3 j£ 0, the condition that the determinant of coefficients vanishes requires that, 

tank*        4*1*,(** + 7*) ,14N 
tol«lo"~(fc» + 7»-*|)a, V   ; 

which serves as the dispersion relation; Eq. (14) may be recognized as being similar to the corre- 
sponding dispersion relation far the case of a slab.1* Using Eq. (13) to solve for 2? in terms of A 
and applying the resultant expression in conjunction with Eq. (11) to solve for C in terms of A, it 
follows that, 

«i   =   A{rinkxz + a*ink3x}eo$(hy)ei^—,t\ (15) 

vt   =   A{^eo»k1x + ßeo»k7x}»mlhy)ei^'-tl\ (16) 
*i 

«j   -   iA{-lca*k1x + -(kJa + hß)eo»kix}co»(hy)eir«*-<t\ (17) 
*i 7 

where a and ß are denned by, 

g=_sint1«   2(^ + 7») 
tink7a(f3 + h2-kl) v   ' 

and 
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C = - (-hhJ\B - ™*2f —-!*!*_ A - AA (19) 

As described previously,14 the normalization constant may be determined by quantizing the phonon 
modes so that, 

1     /+•        f+d 

2Af«rfT' 
(20) 

where uy is the radial frequency of the mode with wavevector, 7. Evaluation of Eq. (20) produces 
the amplitude A in terms of the following equations: 

£5   x   {/i(&,<i)[/2(*i,a) + 2a,1(*1,i!a,«) + aVa(*2,a)] 

-/i(*,d) 

where, 

+/i(Ä,«Q 

+2d 

p/i(*i,«) +Äa(*i,i2,c) + /3Vi(*a,«) 
, 1 *i 

£/,(*„«) - £(*2a + «#*(*!,*„«) + (*»« + W)/i(jfea)J 

£/,(*!,«) + ^(*i,*2,«) + ^A(*„a)] J = 5^-, (21) 

A(*,<0 = 2<J-/,(*,*), 

(«1 - «a) (*i + *a) 

Mt,,*,,.) = •y-y* ,y*'+»» 
(*i - *a) («1 + *») 

In the remainder of this paper, we shall write A2 as, 

ii» = 
2ft 

where Bn is ^*%ifd 
MVyBy* 

straightforwardly by Eqs. (21) and (26). 

(22) 

(23) 

(24) 

(25) 

(26) 

As discussed by Morse,16 the boundary conditions at y = ±d determine the value of h; however, 
the adjustment of h alone is insufficient to satisfy Tm,T„ and T^ at y = ±d. For aspect ratios 
where the width of the rectangular cross section (2d) is greater than or approximately twice the 
height (2o), the two shear stresses T^ and T„ become negligible and, accordingly, Morse chooses 
h so that the extensional stress Tw vanishes; this requires, 

W=(n + I)x, n = 0,1,2,... . (27) 
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The principal propagation mode it the mode having no nodal surface« parallel to the length; this is 
the mode with n = 0. Motivated by Morse's experimental observation that the principal mode is 
dominant1' as well as by the analysis in section 3, the present paper will present numerical results 
for only the principal mode of the set of modes denned by Eq. (27). As demonstrated in Refs. 15 and 
16, there is another principal mode observed experimentally. This mode corresponds to a "width 
mode" and is determined as demonstrated previously for the "thickness mode". For the "width 
mode", however, the approximate solution is based on taking ki = k3 = k and by satisfying the 
boundary conditions on the stress at jf = ±d; for this mode, k is then determined in an analogous 
manner by approximately satisfying the boundary conditions at * = ±o; for these modes it follows 
that 24a = nx with n = 0,1,2,..- This paper shall present detailed numerical results only for the 
principal "width mode" which corresponds to taking 4 = 0. The dispersion relation resulting from 
the boundary conditions at y = ±d for the "width modes" is identical in form to Eq. (14). Eq. (14) 
may be written as, 

tanW«*3-*2)     " (2^-X3)2 ' K   ' 
where, 

X*   = V(c/c.)a, (29) 
4*   =   *2+(oA/x)a, (30) 

s m trrjx, (31) 
«   =   (e./«w)8 = (l-2<r)/2(l-<r). (32) 

la Eq. (32), o is Poisson's ratio. 

3. SCATTERING SATES IN A RECTANGULAR QUANTUM WIRE DUE TO 
THE DEFORMATION POTENTIAL DRIVEN BY COMPRESSIONAL 

ACOUSTIC PHONON MODES 

The Hamiltonian, IT*/, for the deformation potential interaction of the "thickness mode" is 
given by, 

ff*/   =   E.V-«(f) 

=   *E>[AM.(7) + «U(-7)](£ + 5 + *T«)^'. (M) 

where £„,„»(7) and €^,(-7) are the usual annihilation and creation operators; specifically, 

«M = E [*M.(T) + «UHr)] *».I.TV
,B

. (34) 
T,n,m 

The time dependent term, e-*"*»*, is not included in Eqs. (33) and (34) since it will be included 
in the energy-conserving delta function in the Golden Rule, m Eqs. (33) and (34), the sum over 
7 represents the usual integration over wavevector, while the sums over n and m represent the 
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addition of the various acoustic phonon modes. For the normalized compressional, or longitudinal, 
modes of section 2, it follows that, 

(35) 

where (it*=c373. In the extreme quantum limit, the ground state effective mass electronic wave- 
function is given by, 

«**.>-£-(=)-(2)*-. 
and the eigen energy is, 

Accordingly, the matrix element, < q'W^q >, is given by, 

(36) 

(37) 

< l\B±f\q >- 
i^rink' 

(38) 
An examination of the n-dependent terms in Eq. (38) demonstrates that they contribute to the 
matrix element squared in such a way that these terms for n = 1 are only 1/25 of their magnitude 
for n = 0; a similar reduction occurs in going from n = 1 to n = 2 and it is concluded that only 
the principal mode contributes significantly to Eq. (38) which was derived an the assumption that 
the carriers remain in the ground state of the extreme quantum limit, x-y potential. 

The Fermi Golden Role scattering rate corresponding to the matrix element of Eq. (38) is 
given by, 

i - £j03FHtf T2rinkia 
*ao(T2 - *fo») 

(* + 5*5)'(s:&,*,rt*»"')' 

i> 

>+i)*[1-(»+*)']. 
(39) 

where A has been written as Ay to indicate the 7 dependence of Ay, L is the normalisation 
length along the axis of the quantum wire and N is the usual temperature-dependent Bose-Einstein 
occupation number for the acoustic phonons. Using Eq. (26) and denning factors Z\ and £3, Eq. 
(39) may be written as, 

i = E/T^-(^)wZ?Z|(W + 5±5)'(^T2")±^)'     (4°» 
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where 

* ~ M*3-*?«')* (41) 

z* = l 

(«+!)* i-(»+!)a 
(42) 

At discussed previously, the "width mode" scattering rate may be readily formulated by inter» 
changing the roles of x and p. 

4. NUMERICAL RESULTS 

The deformation-potential scattering rates hare been calculated for two separate quantum wire 
dimensions. The quantum wire aspect ratio of width to height is taken as two and the dwnti«««« 
of the rectangular cross section are taken as 28.3 A by 56.6 A, and 100 A by 200 A. In these 
calculations an isotropic cubic medium has been assumed ""^ thy compressional, or longitudinal, 
sound speed has been taken to be that of GaAs; it should be noted that imposing both of these 
constraints makes it impossible to have a transverse sound speed mmtrhim^ that of GaAs. This is 
a consequence of the fact that GaAs may be treated as baring an isotropic elastic tension only m 
a very rough approximation. In this paper, Poissan's ratio, «r, is taken to be 1/3; this choke fixes 
the value of c as given by Eq. (32). 

Scattering rates for «mission and absorption as functions of electron energy are plotted in Fig. 
1 for a quantum wire with a 28.3 A x 56.6 A (10 monolayers by 20 monolayers) cross section; these 
scattering rates are calculated at 77 K for both bulk acoustic modes and for the compressional 
modes. Three distinct and important features are obvious from Fig. 1 as well as from Fig. 2 which 
presents related results for different dimensional parameters. First, the scattering rates for the case 
of the compressional modes are approximately an order of magnitude higher than the corresponding 
bulk scattering rates. These enhanced scattering rates provide a clear indication that conceptual 
designs for mesoscopic devices must be evaluated in light of the fact that confined acoustic modes 
may play a significant role in carrier transport in these devices. As shown m Fig. 2, for the 
case of a 100 A x 200 A cross section we find similar scaling of the scattering rates with energy; 
however, the rates are approximately an order of magnitude lower than those for the 28.3 A x 56.6 
A quantum wire. The second important feature of Figs. 1 and 2 is the appearance of structure 
in the scattering rates which results from the energy threshold for the different mode values, m, 
of the "thickness" and "width" modes. As is obvious from Figs. 1 and 2, each of these modes 
makes a notable contribution to the density-of-states and to the scattering rate. The scattering 
rates in Figs. 1 and 2 have been calculated by including the five lowest-order "thickness" modes 
as well as the five lowest-order "width" modes. The present calculations demonstrate that it is 
essential to retain a number of acoustic modes in order to obtain accurate scattering rates. The 
third important feature of these results is the enhancement in the scattering rate due to emission of 
compressional modes with energies of a few meV. This pronounced peaking of the scattering rate 
is due to the dominance of selected compressional modes in the emission process. Thus, the results 
in this analysis indicate that it is essential to consider carrier-acoustic phonon scattering processes 
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when designing mesotcopic devices containing quantum-wire elements. Based on what appears to 
be the most complete set of approximate compressional modes available for a rectangular quantum 
wire,16 it is demonstrated that the details of the modal structure must be taken into account 
if deformation-potential scattering is to be modeled accurately. Further analysis is necessary to 
rigorously show that deformation-potential scattering rates by acoustic phonons in quantum wires 
exceed the corresponding bulk scattering rates; however, these results provide a first indication that 
acoustic phonon scattering may be significantly enhanced in quantum wires. 
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Electron-acoustic-phonon scattering in a rectangular quantum wire is studied. The Hamiltonian 
describing the deformation-potential interaction of confined acoustic phonons with carriers is derived by 
quantizing the appropriate, experimentally verified approximate compressional acoustic-phonon modes 
in a free-standing rectangular quantum wire. The scattering rate due to the deformation-potential in- 
teraction is obtained for GaAs quantum wires with a range of cross-sectional dimensions. The results 
demonstrate that a proper treatment of confined acoustic phonons may be essential to correctly model 
electron scattering rates at low energies in nanoscale structures. 

I. INTRODUCTION 

A number of proposed applications of mesoscopic elec- 
tronic structures involve carrier transport at low temper- 
atures and low carrier energies; frequently, the regime of 
interest is one where dimensional confinement modifies 
the phase space substantially. It is well known that in 
this low-temperature, low-energy regime,1-6 acoustic 
phonons play an enhanced role in carrier scattering and 
may dominate over the scattering of carriers by optical 
phonons. In addition, in nanoscale structures it is possi- 
ble that phase-space restrictions may weaken or forbid 
optical-phonon scattering processes that would normally 
dominate in bulk structures. Recently, there has been an 
extensive literature on the role of dimensional 
confinement in modifying longitudinal-optical (LO) pho- 
non modes and their interactions with charge carriers in 
nanoscale and mesoscopic semiconductor structures (see, 
for example, Refs. 7-12 and the numerous papers refer- 
enced therein). On the other hand, there are relatively 
few treatments dealing with the role of dimensional 
confinement in modifying acoustic-phonon modes and 
their interactions with charge carriers.2-4,13,14 In spite of 
the fact that there is an extensive literature on the theory 
of acoustic modes in conventional waveguides, resona- 
tors, and related structures, few efforts have been report- 
ed on formulating a theory of acoustic phonons in nano- 
scale structures, where both phonon confinement and a 
quantum-mechanical treatment of phonon normalization 
are essential. The necessity for such theoretical treat- 
ments has been demonstrated recently by experimental 
studies providing both direct and indirect3,4 evidence of 
the importance of acoustic-phonon confinement in re-, 
duced dimensional electronic structures. 

In this paper, we have obtained the normalized expres- 
sions for acoustic phonons confined in a free-standing 
rectangular quantum wire by appropriately quantizing 

the acoustic-phonon displacements. As is well known, 
there are no exact solutions for the complete set of pho- 
non modes for a rectangular quantum wire; nevertheless, 
as for the case of LO phonon modes,8 the approximate 
modes presented in this work provide simple and useful 
expressions, which are well suited for modeling the in- 
teraction of carriers with acoustic phonons. As a basis 
for investigating the role of reduced dimensionality on 
the coupling between acoustic phonons and carriers, we 
have formulated the interaction Hamiltonian for the de- 
formation potential associated with confined acoustic- 
phonon modes in rectangular quantum wires. The result- 
ing scattering rates (based on the golden rule approxima- 
tion) are compared with those obtained from the bulk- 
phonon modes. For numerical calculations, GaAs is used 
as the material of choice throughout this study. 

EL QUANTIZATION OF COMPRESSIONAL 
ACOUSTIC-PHONON MODES 

FOR A RECTANGULAR QUANTUM WIRE 

The compressional, or dilatational, acoustic-phonon 
modes in free-standing rods of rectangular cross section 
have been examined both experimentally13 and theoreti- 
cally16,17 by Morse in an extended study. Morse has de- 
rived an approximate set of hybrid compressional, or di- 
latational, acoustic-phonon modes,16,17 which are found 
to accurately approximate the experimentally observed 
modes over a wide range of conditions.13 Specifically, 
Morse has found that the approximate hybrid modes de- 
rived by assuming separable boundary conditions16,17 

have simple analytical representations and provide con- 
venient approximations for the rectangular geometry 
when the cross-sectional dimensions have aspect ratios of 
approximately 2 or greater. For smaller aspect ratios 
(i.e., close to 1), Morse has argued correctly that it is 
necessary to turn to numerical solutions since exact 
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FIG. 1. Schematic drawing of a free-standing rectangular 
quantum wire considered in the analysis of electron-acoustic- 
phonon scattering. 

analytical solutions for the compressional acoustic- 
phonon modes in a rectangular structure are not expressi- 
ble analytically. In this paper, we shall restrict our 
analysis to rectangular quantum wires with aspect ratios 
of 2 or greater. 

As depicted in Fig. 1, we consider a free-standing rec- 
tangular rod of infinite length in the z direction having an 
x-directed height (or thickness) la, and a ^-directed width 
2d; the origin of coordinates in the x-y plane is taken to 
be at the geometric center of the rectangular cross sec- 
tion, and the x-, y-, and z-directed acoustic-mode dis- 
placements are represented, respectively, by 

u^=u{x,y)eiy(z-a) , 

i>(z—cr) vl=v{x,y)e 

wl=w(x,y)eiri2-") , 

(1) 

(2) 

(3) 

where y=2ir/k, A. being the wavelength, y is the z- 
directed free wave vector, and c is the phase velocity. 
Adopting Morse's form for the approximate separation- 
of-variables solution, the compressional waves for the 
"thickness" modes may be represented by 

u = [ A sinfc,;c +B sink2x Jcos(Ay) , 

— A coskxx+C cosk2x sin(Aj>) , 

w=i _JL A coskxx-i—{k2B+hC)cosk2x 

where 

*2+A2=y2[(c/cd)
2-l], 

kl+h2=y2[(c/cs)
2-l), 

(4) 

(5) 

cosihy) , 

(6) 

(7) 

(8) 

and the compressional, or dilatational, sound speed cd, as 
well as the transverse, or shear, sound speed cs, are ex- 
pressed in terms of the Lame constants A.' and ju: 

c}=a'+2fi)/p , (9) 

cf=n/p , (10) 

with p being the density of the medium. Substituting 
Eqs. (4)-(6) into the conditions that the T^, Tyx, and Ta 

stress components vanish at x = ±a, it follows that simul- 
taneous equations for the amplitudes A, B, and C are 
given by 

2 Ah sinkxa+Bh s\nk2a+Ck2s\nk2a=0 , (11) 

-^(r2 + /i2-A;^)cos/c1a+2M1*2cos/:2a=0 , (12) 

2A(h2+y2)sinkxa+B{y2+h2-k2
2)smk2a=0 .        (13) 

When k2¥=0, the condition that the determinant of 
coefficients vanishes requires that 

t&nk2a _     4kxk2(h2+y2) 

tan/c,a ~     (h1+y2-k\)2 ' 
(14) 

which serves as the dispersion relation; this result is simi- 
lar to the corresponding dispersion relation for the case 
of a slab.18 Using Eq. (13) to solve for B in terms of A 
and applying the resultant expression in conjunction with 
Eq. (11) to solve for C in terms of A, Eqs. (3)-(6) may be 
written as 

ux = A{sink]x+asmk2x]cos(hy)e'riz  c" , 

vx = A —cos&i* +ßcosk2x sm(hy)eirl'-a) 

(15) 

(16) 

w,=iA _JL 1 ,   cosk,x-i—(k2a+hß)co&k2x 
kx y 

Xcos(/ry)e""*-"> , 

where a and ß are defined by 

,._**,«    2(/,2V)    A=aA 
&mk2a (y2+h2-k\) 

and 

(17) 

(18) 

C = - 
k2h 

h2+y2 

sink, a 
B = - 

2k,h 

sink2a (y2+hz-k\) 
A=ßA 

(19) 

Following the quantization procedure of Ref. 14, the nor- 
malization constant may be determined by quantizing the 
phonon modes so that, 

-—- l     dx f    dy\uu*+vv*+ww*} = 
And J-a        J -d       K 2Afö>„ 

(20) 

where ay is the radial frequency of the mode with wave 
vector y. Performing the indicated integration, Eq. (20) 
yields the amplitude A in terms of the following equa- 
tions: 
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4ad 
fl(h,d)[f2(kua)+2agl(kl,k2,a)+a2f2(k2,a))-f[(h,d) 

h2_ 

1 
2ßh I^f^kua)+^f-g1(kvk2,a)^fx(k2,a) 

+/,<M> Z-fl(ki,a)--2-(k2a+hß)g2(ki,k2,a)+ 
(k2a+hß)2 

k\ 
-f\(k2,a) 

+2d £fi(k1,a) + %^-g2(kl,k2,a)+ß2f1(k2,a) 
ki <i 

where 

fx(h,d)=d 1 + rin(2Atf) 
(2hd) 

f2(h,d)=2d-fl(h,d) , 

sin{k1—k2)a 
gl{ki,k2,a)=- 

g2{k],k2,a)= 

<*,-*2) 

sin( k, ■k2)a 

(kx-k2) 

Henceforth, A2 is written as 

2H 

sin(/c, +k2)a 

(*,+*2) 

sin(kl+k2)a 

(kx+k2) 

A2 = 
MCOyBy 

(22) 

(23) 

(24) 

(25) 

(26) 

where By is defined straightforwardly by Eqs. (21) and 
(26). 

In accordance with the solutions of Morse,16 the 
boundary conditions at y = ±d determine the value of h; 
however, the adjustment of h alone is sufficient to make 
Tyy, Txy, and T^ vanish at y = ±d. For aspect ratios 
where the width of the rectangular cross section (2d) is 
greater than or approximately equal to twice the height 
(2a), this problem can be circumvented since the two 
shear stresses Txy and T^ become negligible. According- 
ly, Morse chooses h so that the extensional stress Tyy 

vanishes; this condition requires 

hd=(n+\)ir,   n =0,1,2, (27) 

The principal propagation mode (i.e., n —0 or h =ir/2d) 
has no nodal surfaces parallel to the length. Motivated 
by the analysis in Sec. Ill, as well as by Morse's experi- 
mental observation that the principal mode is dom- 
inant,15 the present paper considers the n =0 case for the 
thickness modes in numerical calculations. In addition to 
the thickness modes, another set of acoustic modes is ob- 
served experimentally.15,16 These modes correspond to 
"width modes" and are determined in a manner similar 
to that used to determine the thickness modes. By satis- 
fying the boundary conditions on the stress at y = ±d, the 
solutions for the width modes show expressions analo- 
gous to Eqs. (15)—(17) with the roles of x and y as well as 
k and h interchanged, respectively. For these modes, k is 
then determined by approximate boundary conditions at 
x =±a.16 The dispersion relation for the width mode is 
identical in form to Eq. (14), and the normalization pro- 
cedure for proper quantization is as described in Eq. (20). 
As for the thickness modes, only the principal mode with 

2M<or ' 
(21) 

k =0 is considered for the width modes. 
We have calculated acoustic-phonon frequencies as a 

function of wave vector y for the thickness and width 
modes in GaAs quantum wires. For this purpose, Eq. 
(14) may be written as 

(28) 

(29) 

(30) 

(31) 

(32) 

tantflV-F^lL^ _ A^y/T^Vex2-^ 

tandr^F3?) Utf-X2)2 

where 

X
2=s2(c/cs)

2, 

tf=s2+(ah/ir)2 , 

s=ay/ir , 

e=(cI/cd)
2=(l-2a)/2(l-CT) , 

and a is Poisson's ratio. Due to the periodic nature of 
trigonometric functions, the phonon frequency <ay (=cy) 
has multiple solutions for a given y and n (i.e., fixed A or 
k). Thus, an additional index m is needed to distinguish 
different modes. Figures 2 and 3 depict dispersion curves 
of    the    six    lowest    thickness    modes    (h=v/2d, 
m = 1 6) and the corresponding width modes (k =0, 
m =■ 1,..., 6). The quantum wire cross-sectional dimen- 
sions areochosen to be 28.3X56.6 A2 for Fig. 2 and 
50X200 A2 for Fig. 3, respectively. As expected, the 
width modes tend to have lower energies than the thick- 

16 l    i     i    |     i     i     i     |     i     i     l     I—i     <     ' l_i_!.-'-4-J--"r" 

28.3 A x 56.6 A 

2 4 6 8 10 

Phonon Wave vector (106 cm"1) 

12 

FIG. 2. Dispersion curves for the six lowest width and thick- 
ness modes (m = 1,... ,6) of a 28.3X56.6-Ä GaAs quantum 
wire. The solid lines are for the width modes and the dashed 
lines are for the thickness modes. 
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FIG. 3. Dispersion curves for the six lowest width and thick- 
ness modes (m = 1,..., 6) of a 50X200-Ä2 GaAs quantum wire. 
The solid lines are for the width modes and the dashed lines are 
for the thickness modes. 

ness modes, since the width is greater than the thickness 
for each of the cases represented in these figures. 

conserving 6 function in the golden rule. In Eqs. (33) and 
(34), the sum over y represents the usual integration over 
wave vector, while the sums over n and m represent the 
addition of the various acoustic-phonon modes. For the 
normalized compressional, or dilatational, modes of Sec. 
II, it follows that 

#def~    2   EaA 
(01 

& 
-cos(fc,;c)cos(Ay) 

xKm<r>+<m<-r)]e'>2, (35) 

where <o2=c2y2. Assuming the extreme quantum limit, 
the ground-state effective-mass electronic wave function 
is given by 

and the eigenenergy is 

vx 
2a 

E = - 
1m 

v2 

(2a)2 (2d)2 

cos 

w 

■ny 

2d 
,«p 

Hence, the matrix element (q'\Hdef\q) is given by 

(36) 

(37) 

III. ELECTRON-ACOUSTIC-PHONON SCATTERING 
RATES IN A RECTANGULAR QUANTUM WIRE 

The deformation-potential interaction of the thickness 
mode is describable in terms of the Hamiltonian Hde(, 

ifdef=£flV-u(r) 

=Ea 2 lc„.m(Y)+ctm(-y)] 
ytn,m 

du  .  dv  , . ,w (33) 

where c„m(y) and cnm(—y) are the usual annihilation 
and creation operators and 

u<r)=   2   lcn,m(y)+clm(-r)]u(x,y,r)e^ . (34) 

The time-dependent factor e     Ms not included in Eqs. 
(33) and (34), since it will be included in the energy- 

o>Z ,    ,        ,   v „v jr^sinfc.a 
(q'lH^lq)-   2  E.A     * ' 

r.n,m        cjkx kla(TT2-k\a2) 

X V*'+r 
((n+jMl-(n+l)2]} 

xkJri<(-r)].    (38) 

An examination of the «-dependent terms in Eq. (38) 
makes it apparent that they contribute to the matrix ele- 
ment squared in such a way that these terms for n = 1 are 
only ^ of their magnitude for n =0; a similar reduction 
occurs in going from n =1 to n =2 and it is clear that 
only the principal mode contributes significantly to Eq. 
(38), which was derived on the assumption that the car- 
riers remain in the ground state of the extreme quantum 
limit, x-y potential. 

Hence, the Fermi golden rule scattering rate corre- 
sponding to the matrix element of Eq. (38) is given by 

EaA, 
col 

«i*i 

X 
iP'saik.a 

k,a(t?—k2a2) 

12 

(n+!Ml-(n+I)2] 
UV + i-±i)6 JL 

2m 
(y2T2qy)±iuaY (39) 

where A has been written as A y to indicate the y depen- 
dence of A r, L is the normalization length along the axis 
of the quantum wire, and N is the usual temperature- 
dependent Bose-Einstein occupation number for the 
acoustic phonons. Introducing By through Eq. (26) and 
defining factors Z, and Z2, Eq. (39) may be written as 

^lI+'äyEl 2pabB 

<o' 

(ci*i>: 

X8 

where 

# 
^(y^2qy)±fuoY 

Z^Zl(JV+i±i) 

(40) 
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IT sink, a 
2 = ■  

1     k.alit-kh2) 

and 

Z,= 
(n+±)Tr[l-(n+±)2] 

(41) 

(42) 

The "width-mode" scattering rate may be readily formu- 
lated by following the procedure described above. 

IV. NUMERICAL RESULTS 

Deformation-potential scattering rates have been cal- 
culated in GaAs for two different quantum-wire aspect 
ratios. In the first case, the quantum-wire aspect ratio of 
width to height is taken as 2 and the dimensionsof the 
rectangular cross section are taken as 28.3X56.6 A2 (i.e., 
10X20 ML) and 100X200 A2. In the second case, the 
corresponding aspect ratio is taken as 4 and the wire di- 
mensions are taken as 50 X 200 A2. In these calculations, 
an isotropic cubic medium has been assumed and the 
compressional, or longitudinal, sound speed has been tak- 
en to be that of GaAs; it should be noted that imposing 
both of these constraints makes it impossible to have a 
transverse sound speed matching that of GaAs. This is a 
consequence of the fact that GaAs may be treated as hav- 
ing an isotropic elastic tension only in a very rough ap- 
proximation. In this paper, Poisson's ratio a is taken to 
be \; this choice fixes the value of € as given by Eq. (32). 

Scattering rates for emission and absorption as func- 
tions of electron energy are plotted in Fig. 4 for a quan- 
tum wire with a 28.3X56.6 A2 cross section; these 
scattering rates are calculated at 77 K for both bulk 

10 
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c 
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Absorption (confined) 
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'        I 1 1 1— 
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FIG. 5. Deformation-potential scattering rates for bulk and 
confined acoustic-phonon modes in a 100X200-A GaAs quan- 
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case of confined acoustic modes occur at the onset of emission 
for the various width and thickness modes. These thresholds 
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thickness modes. As in Fig. 4, the plotting resolution is limit- 
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acoustic modes and for the hybrid compressional modes. 
Figures 5 and 6 present results analogous to those of Fig. 
4 but for different cross-sectional dimensions. Two dis- 
tinct and important features are obvious from Figs. 4-6, 
which present related results for different dimensional pa- 
rameters. First, the appearance of structure is prominent 
in the scattering rates (for confined phonons), which re- 
sults from the energy threshold for the different mode 
values m of the thickness and width modes.  As can be 
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thickness modes. As in Figs. 4 and 5, the plotting resolution is 
limited. 
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seen from Figs. 4-6, each of these modes makes a notable 
contribution to the density of states and to the scattering 
rate. In particular, the scattering rates at low energies 
show pronounced peaks and are strongly enhanced due to 
the dominance of selected compressional modes in the 
emission process. Thus, it is essential to retain a number 
of acoustic modes for an accurate estimation of scattering 
rates. The results shown in Figs. 4-6 have been obtained 
by including the six lowest-order thickness modes as well 
as the six lowest-order width modes. Due to the limited 
resolution in plotting, the details of one-dimensional na- 
ture (such as the number of peaks and their heights) are 
not illustrated fully in these figures. The second impor- 
tant feature of Figs. 4-6 is that the scattering rates for 
the case of the hybrid compressional modes are higher 
than the corresponding bulk scattering rates. These 
enhanced scattering rates provided an indication that 
conceptual designs for mesoscopic devices need to be 
based on an awareness of the fact that confined acoustic 
modes may play a significant role in carrier transport in 
these devices. As shown in Fig. 5, for the case of a 
100X200-Ä2 cross section we find similar scaling of the 
scattering rates with energy as for the case of Fig. 4; how- 
ever, the rates are approximately an order of magnitude 
lower than those for the 28.3X56.6-A2 quantum wire of 
Fig. 4. 

The hybrid modes considered in this paper contain 
both longitudinal and transverse components as is evi- 
dent from Eqs. (15)—(18); as expected, only the longitudi- 
nal components contribute to the deformation potential 
of Eq. (35). The appearance of a hybrid-mode dispersion 
relation. Fq. (14), similar to that for the dilatational 
modes of a slab18 is entirely reasonable, since the nexural 

modes are similar to the shear modes." Such modes have 
strong transverse components and they make little contri- 
bution to electron-acoustic-phonon interaction through 
the deformation potential. 

V. CONCLUSION 

The results in this analysis suggest that it may be im- 
portant to consider carrier-acoustic-phonon scattering 
processes when designing mesoscopic devices containing 
quantum-wire elements. Based on what appears to be the 
most complete set of approximate compressional modes 
available for a free-standing rectangular quantum wire,16 

it is demonstrated that the details of the modal structure 
need to be taken into account if deformation-potential 
scattering is to be modeled accurately. Further analysis 
is necessary to rigorously show that deformation- 
potential scattering rates by confined acoustic phonons 
exceed the corresponding rates obtained from bulk pho- 
nons in quantum wires; however, these results provide an 
indication that acoustic-phonon scattering may be 
enhanced considerably in some nanoscale structures. 
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Acoustic phonon modes in isotropic cubic media are derived for a number of quantum-wire and 
quantum-dot geometries of significant interest in nanoelectronics and optoelectronics. In each case, 
the mode amplitude is determined by requiring that the mode energy be given by that of the properly 
quantized phonon. For the case of cylindrical quantum wires and quantum dots with rectangular 
faces, the Hamiltonians for the deformation potential interactions are derived. These quantized 
acoustic modes and the associated deformation potential Hamiltonians provide a basis for modeling 
carrier-acoustic-phonon interactions in a variety of mesoscopic devices. Our new results supplement 
previous treatments of related piezoelectric effects in cylindrical quantum wires. 

I. INTRODUCTION 

Research on nanoscale and mesoscopic electronic and 
optoelectronic structures has focused extensively on carrier- 
phonon interactions. However, until recently this research 
has been based on the assumption that both optical and 
acoustic phonons may be treated as bulk phonons without 
regard to dimensional confinement effects. In the past few 
years, this situation has been improved as a result of numer- 
ous investigations of the properties and interactions of opti- 
cal phonons in nanoscale electronic and optoelectronic struc- 
tures confined in one or more spatial dimensions.1 In spite of 
considerable experimental evidence on the importance of di- 
mensional confinement  in  determining the properties of 
acoustic phonons,-"9 there have been very few attempts to 
model confined acoustic phonons in electronic and optoelec- 
tronic structures having nanometer characteristic dimensions 
(i.e., nanoscale) and wavelike electron (i.e., mesoscopic) 
properties.    In    particular,    selected    acoustic    phonons 
in   nanoscale   structures   have   been   analyzed   for   the 
cases of superlattices,10 free-standing slabs,11 free-standing 
cylinders, ~   and  quantum  wires  with  rectangular  cross 
sections.    In addition, confined acoustic phonons in spheri- 
cal quantum dots have been analyzed in the context of exci- 
tonic dephasing.14 In the case of the free-standing slabs,11 the 
dilatational, flexural, and shear modes have all been properly 
quantized and appropriate deformation potential and piezo- 
electric interaction Hamiltonians have been derived. How- 
ever, for the free-standing cylinder,12 only the lowest-order 
transverse torsional mode has been considered in deriving 
the piezoelectric interaction Hamiltonian. In the case of a 
quantum wire with a rectangular cross section,13 only ap- 
proximate compressional modes (also known as dilatational 

1 Also with Department of Physics, North Carolina State University, Ra- 
leigh, NC 27695. 

modes) have been considered; as for the case of optical 
phonons, it is impossible to exactly satisfy all boundary con- 
ditions for the rectangular geometry.1 

In this article, the quantized acoustic phonon modes are 
derived for a number of quantum-wire and quantum-dot ge- 
ometries of significant interest in nanoelectronics and opto- 
electronics. In particular, the classical solution for the longi- 
tudinal mode of a free-standing cylinder15-17 is quantized for 
a nanoscale free-standing cylinder under the assumption of a 
cubic, isotropic medium. (In the literature on classical acous- 
tics, these longitudinal modes are frequently designated by 
the terms compressional modes or dilatational modes; they 
are equivalent.) This longitudinal mode is of special interest 
since it provides the dominant contribution to the acoustic- 
phonon deformation potential interaction for carriers in the 
radial ground state of a free-standing cylindrical quantum 
wire. Indeed, since the well-known deformation potential is 
proportional to the divergence of the acoustic phonon dis- 
placement, it follows that transverse modes make no contri- 
bution to the deformation potential. Furthermore, this article 
presents derivations of the normalized lowest-order breath- 
ing mode16 (i.e., lowest-order radial compressional mode) 
and  the  normalized  lowest-order torsional  mode16  (i.e., 
lowest-order transverse mode with shear normal to the radial 
direction) for a free-standing, isotropic spherical quantum 
dot. These modes are important for deformation potential 
scattering and piezoelectric scattering, respectively. Our re- 
sults clearly  illustrate  that acoustic-phonon-assisted pro- 
cesses in spherical crystallites have selection rules that are 
sensitive to the spherical confinement geometry. Finally, this 
article presents the quantization procedure for approximate 
acoustic phonon modes for free-standing quantum dots with 
rectangular faces. As is well-known, such modes may be 
required to properly model phonon bottleneck effects in 
nanoscale quantum-dot structures.18-20 
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FIG. 1. Dispersion curves for the five lowest longitudinal modes of an 
isotropic cylinder with cr=0.30. V0 represents the sound speed of the 
Young's module mode, V0 = \jE/p. 

II. PRESCRIPTION FOR QUANTIZING CONFINED 
ACOUSTIC PHONONS IN QUANTUM WIRES 
AND QUANTUM DOTS 

The normalization of acoustic-phonon modes in quan- 
tum wires and quantum dots can be obtained by considering 
the average displacement energy of the phonon field.12 By 
taking the acoustic-phonon displacement u(r) to be 

u(r)=-^2 [u(k,r)ak+c.c], (1) 

(a) 

2a 

(b) 

FIG. 2. Schematic lattice displacement patterns for (a) the radially directed 
breathing mode and (b) the azimuthally directed torsional mode in a spheri- 
cal quantum dot of radius a. 

fa fir C2ir 
drr2\   ddsmd]    d</>u*(k,r,0,<£) 

Jo        Jo Jo ATTQ- 

the amplitude for the kth component of the displacement 
must be normalized to h/2Mo)k [i.e., l/VJ"d3r|u(k,r)|2 

=h/2M wj, where M is the mass of the ions in a unit cell, 
ak is the phonon annihilation operator for phonons in mode 
k, wjt is the angular frequency, r is the position vector, N is 
the number of unit cells in the normalization volume V, and 
c.c. represents the complex conjugate of the first term. 
Throughout this article, the vector notation k is used to de- 
note the phonon states (or modes), i.e., k represents collec- 
tively the phonon wave vector and/or discrete mode indices 
to specify a phonon state (which correspond to the wave 
vector and/or subband indices of electronic states). This pro- 
vides a convenient convention since the dimension of the 
phonon wave vector and the number of necessary indices 
change with differing degrees of confinement and geometry 
considered in our study. For a free-standing quantum wire of 
infinite length and radius a, this normalization condition thus 
requires that 

■u(k,r,0,<f>) = 

1     f2"-      fo 

ira   Jo Jo 
drru*{k,r,<f>,z)-u{k,r,<f>,z) = 

2Mu>k 

(2) 

where r defines radial locations normal to z, and <f> is the 
usual azimuthal angle in the cylindrical coordinates. Like- 
wise, for a free-standing spherical quantum dot of radius a, 
the normalization condition requires 

2Mwk 
(3) 

where r, 6, and <f> are the usual spherical coordinates. Finally 
for a free-standing quantum dot with rectangular faces the 
normalization condition requires 

1       Call Cb/2 Cell 
-7- \      dx\      dy\      dz u*(k,x,y,z)-u(k,x,y,z) 
abC  J-fl/2      J-b/2      J-c/2 

2Mwk 
(4) 

where a, b, and c define the dimensions of each of the three 
sides of the quantum dot and x, y, and z denote the usual 
Cartesian coordinates. Equations (2)-(4) define the condi- 
tions needed to properly normalize the quantum-wire and 
quantum-dot acoustic-phonon modes discussed in this work. 

III. ACOUSTIC-PHONON NORMALIZATION IN A 
FREE-STANDING CYUNDRICAL QUANTUM WIRE AND 
THE CORRESPONDING DEFORMATION 
POTENTIAL HAMILTONIAN 

The normalization of the lowest order torsional (i.e., 
«^-independent transverse) acoustic modes in a free-standing 
cylindrical quantum wire have been considered previously;12 

accordingly, the current derivation focuses on the corre- 
sponding longitudinal, ^-independent, acoustic modes. It is 
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well-known that these longitudinal modes in a free-standing 
isotropic, cubic medium of cylindrical geometry have only 
radial and axial displacements given by15- 

Kr(k,r,z) = 

Mz(k,r,z) = i 

^-r[AJ0{pr)+BJ,(qr)]\eik^'\       (5) 

-Y-AJ0(pr) + kBJ0(qr) ,ik{z-vt) ',     (6) 

where J0 and Jx are the ordinary Bessel functions, k is the 
phonon wave-vector component in the z direction, v is the 
phonon phase velocity, and A and B are normalization con- 
stants. [As defined in Eq. (1), |k|#*; k denotes other indices 
as well.] In addition, p and q are defined by 

'2-ll. (7) p2=t 
pw 

p- 

pv: 

■1 (8) 

where X.' and p. are the Lame constants, and p is the density 
of the medium. The proportionality between the normaliza- 
tion constants B and A defines the quantity ß through ß=BI 
A; this relation is specified by Eqs. (5) and (6) coupled with 
the boundary condition where the tractions across the cylin- 
drical surface vanish at r = a. For the general case, this rela- 
tionship is defined by the following set of equations 

#J0{qa)    v2k2pk' 
2p x~l TT7TTJo(9fl) B da' k' + 2p 

dJx{pa) 
(9) 

2Bk 
dl^l.A P 

da k 
2k2- 

v2k2p 
Jdpa) = 0. (10) 

The dispersion relation and the ratio B/A are obtained from 
these two relations. Figure 1 shows dispersion curves for the 
five lowest modes as a function of ka, where V0 represents 
the sound speed of the Young's module mode, V0 = yjE/p 
= Jp(3k' + 2p.)/(k' + p)p. Due to the oscillatory nature of 
Bessel functions, Eqs. (9) and (10) give multiple solutions 
for a given k value. Consequently, additional indices (i.e., 
other than k) are needed to denote a specific phonon state, 
which are collectively represented by k as mentioned previ- 
ously. Since the longitudinal modes are (^-independent, the 
normalization condition of Eq. (2) then gives 

__—=-j      drr(uru* + uzuz) 
2Mwk    a   Jo 

_2A2   f« 

~ar Jo 

+ k2ß2J2
0(qr)+p2J2(pr) 

drr\ p- J\(pr) - 2p2ßJ0(pr)J0(qr) 

■2pqßJl(pr)J1(qr) + q2ß2Ji(qr) (11) 

and upon performing the integrations it is possible to arrive 
at the following analytical expression for A 

l=W]iÄrM (12) 

where 

a= j ^ %- [J2(Pa)+J2(pa)]-2p2ß -^-i [qJdqa)J0(pa)-pJ:(pa)J0(qa)] + k2ß2 y [J2(qa)+J2
0(qa)] 

H    y ?TLJ1( 

+P2 a-T [j\iPa)-Jo{pa)Ji{pa)] + 2pqß -7—7 [pJ0{pa)J fad) 
2. H    y 

-qJ0(qa)Jl(pa)] + q2ß2 ■=- [J2
1{qa)-J0(qa)J2(qa)] (13) 

The deformation potential Hamiltonian Hdef for the case 
of spherically symmetric constant energy surfaces is given in 
terms of the deformation potential constant Ea and the dila- 
tation A(r)=V-u(r) by21 

Hdef=£aA(r)=^2: 
1 d(rur) | duz 

r     dr dz 
flk+C.C.f. 

(14) 

Accordingly, with Eqs. (5) and (6), 
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tfdef= " 4= 2 [EMq2+k2)ßJo(qr)eikiz-'")ak+c.c.l 

(15) 

where the normalization constant A is given by Eqs. (12) 
and (13). 

IV. NORMALIZATION OF ACOUSTIC PHONON MODES 
IN QUANTUM DOTS 

The classical solutions of pure compressional modes for 
a free-standing, isotropic sphere have been analyzed previ- 
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ously and are given in a convenient form in Ref. 16. For the 
lowest-order compressional mode, also known as the breath- 
ing mode, the acoustic-phonon displacement of a sphere of 
radius a is given by 

u(k,r) = ry;1(^Je-'X (16) 

where r is the unit vector in radial direction, y is the normal- 
ization constant, Vt is the longitudinal sound speed, V, 
= yJ(X' + 2fi)/p, and j: is the spherical Bessel function of 
order one, jl(x)=sinx/x2-cosx/x, and the mode frequency 
Wk is determined by the condition that the traction force on 
the spherical surface Trr vanishes at r=a. That is 

Tr =0    at '-a, 

or equivalently, 

£2 

dr 
ix+2fl)d?^[T;l + ~d? Jo 

ay 
v, 

(17) 

= 0, 

(18) 

in these results, ;0 is the spherical Bessel function of order 
zero, j0(x)=sinx/x. Equations (17) and (18) yield the dis- 
persion relation 

tan 
<»vfl (o^a/V) 

y+2fi 
1 : (o>ka/V,)2 

(19) 

4fi 

For the breathing mode of Eq. (16), the normalization 
condition of Eq. (3) reduces to 

3-y2   f<i; h 
drr2jl(r)=: 

3r   f< 

W/    Jo 2Mi (20) 

where ö>, - wya/Vi. Accordingly, the normalization constant 
y for the longitudinal breathing mode is 

y=-7 
V/i(<ä,)-;'<)( ä>/);'2(fc»/)   V3A/o)k' v; (21) 

where j2 is the spherical Bessel function of order two, 
/200 = l/*(3/*2-l)sin;c-3 cosx/x2. Hence, the normal- 
ization constant of the lowest-order breathing mode of a free- 
standing, isotropic sphere may be determined analytically. 

In addition, the lowest-order pure shear mode, also 
known as the torsional mode, of a free-standing isotropic 
nanoscale sphere may be determined from the classical 
solution:16 

u(k,r,ö)=0rcosÖ;1( Y^)e- (22) 

where j> is the unit vector in the <f> direction, r is the nor- 
malization constant, and Vs denotes the speed of propagation 
for shear modes, Vs = vWp. In this case, the normalization 
condition of Eq. (3) reduces to 

Torsional Mode 

Breathing Mode 

0.1 0.2 0.3 0.4 0.5 

Poisson's Ratio (a) 

FIG. 3. Relation between mode frequencies and Poisson ratios for an iso- 
tropic sphere. The solid line denotes the lowest-order breathing mode and 
the dashed line is for the lowest-order torsional mode. Vs represents the 
shear sound speed. 

-TT        drr2jl(r)=——, 
<>)s Jo 2Mo)k 

where ü>s = oika/Vs, and it follows that 

1 

JJi(üs)-Jo(üs)J2(ä,)   ^M<»k V Mt,,.. 

(23) 

(24) 

Again, it is possible to specify the normalization constant 
analytically. For the torsional modes, the dispersion relation 
may be derived in a manner analogous to that used to derive 
Eq. (19); the result is 

tanlX 
(Oya/V, 

l-k*>ifi/Vs)
2 (25) 

Figure 2 shows the schematic drawing of the lowest-order 
longitudinal mode [Fig. 2(a)] and the lowest-order torsional 
mode [Fig. 2(b)]; the corresponding relationships between 
mode frequencies and Poisson ratios are depicted in Fig. 3. 

As previously discussed for the case of a quantum wire 
with a rectangular cross section,13 it is impossible to satisfy 
all boundary conditions for a quantum dot with rectangular 
faces. This difficulty in rigorously satisfying all boundary 
conditions results because the corner regions of the rectan- 
gular cross section represent singular points where, in gen- 
eral, the boundary conditions on adjacent faces require dif- 
ferent fields at a given comer. Perhaps, the best-known case 
of this so-called comer problem is in electromagnetics where 
only approximate analytical solutions are obtainable for rect- 
angular waveguides. However, an approximate solution, par- 
ticularly in an analytical form, may prove to be useful to 
model confined phonons in nanoscale structures. To illustrate 
the procedure of quantizing the acoustic phonon modes in 
such quantum dots, this article considers the modes derived 
by McSkimin.22 In particular, only the modes which corre- 
spond to flexural thickness modes of the quantum dot are 
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quantized as an example; there are, of course, similar width 
and length modes, as well as analogous congressional 
modes, as Ulustrated in Refs. 13 and 23 for the less complex 
case of a quantum wire. In McSkimin's approximate solution 
for the flexural thickness mode in a quantum dot with rect- 
angular faces, the x-, y-, and z-directed displacements (de- 
noted by u, v, and w, respectively) are written as 

u(Kx,y,z)=A[sm hy + a' sin ^ 

+ ß' sin /^Jsin mx cos nz, (26) 

v(k,x,y,z)=A —-cos lxy cos/iy 
m m 

ß'(m2 + n2) 
+ - cos liy 

l2m 
cos mx cos nz, 

(27) 

w(k,x,y,z)=A -sin hy-a'  — sin/^ 
m 

+ R' —sin l-j r   m 

nm 

cos mx sin nz, (28) 

where a' and ß' are determined by applying desired bound- 
ary conditions on two sets of rectangular face. The discrete 
mode indices for the phonon in state k are presented by m 
and n for the x- and z-components, respectively. Two addi- 
tional indices, Z, and l2, are required for the y-component 
where I, is the subject mode index for the irrotational con- 
tribution to the phonon displacement and Z2 is the subject 
mode index for the rotational contribution. This decomposi- 
tion into rotational and irrotational components is discussed 
in standard texts on acoustics including those identified in 
Refs. 15 and 16. From Eq. (4), it follows that A is deter- 

mined by 

h A 

2Mwk    abc 

/2(.)a/2)/1(«,c/2)[/2(Z1,b/2) + 2a',1(Z1,Z2,b/2) + 2/3'g1(/1)/2)b/2) + a'2/2(/2^/2) 

+ 2a'ß'f2{l2,b/2) + ß'2f2(l2,b/2)]+fl(m,a/2)h(n,c/2) \h(h,b/2) 
m 

'2;2 a'H 

P       mr-j^ fx(l2,bl2)   1-Jl\,m,UI4)J2\n,'.l<-J   m2/A'l.  nm- 

.2 , ;2\ 
l2m 

hih,bl2)- 
2a'n(«2 + Z2) 2a.;2\ 

2—-g^h,h,bl2) 

2ß'n2 

+ -^-gi(hJ2>b/2)+—^l 

+ /l(m,fl/2)/2(»,c/2) 

m (29) 

where 

c /       sin nc 

/iM2)=2l + " 

f2{n,c/2) = c-fi(n,c/2), 

(30) 

(3D 

"«-£*A(r)-l? 
du     dv     <?w\ 

\*c    dy     Bz) 

-T2 
yJN    k 

ZA{m2+l2+n2) 
m 

X cos m. x sin lxy cos nz ak+c.c. • (34) 
sin(Z,-Z,)b/2    sm(li + lj)b/2 

g,{h,lrbl2)=—jpTj T^Tr~' 

sin(Z,-/.)b/2    sin(/i+/;)b/2 

The deformation potential tfdef corresponding to the dis- uulllia_v r  
placements of Eqs. (26)-(28) simplifies gready for_ the^case. In tms an™ ^ ^  ^ 
of spherically symmetric energy surfaces, and results in have been aenvea 

In particular, the spatially dependent terms in Hdef do not 
depend on a' and ß'; thus, the a' and ß' dependence of the 
deformation potential enters only in the normalization con- 

stant A. 

V. SUMMARY 
In this article, the normalized acoustic phonon modes 
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quantum-wire and quantum-dot geometries. Specifically, the 
longitudinal, or compressional, acoustic mode in a free- 
standing cylindrical quantum wire has been normalized ana- 
lytically. This result has special significance since quantum- 
wire components are widely envisioned for mesoscopic 
devices and since analytical solutions are not available for 
quantum wires with rectangular cross sections. Unlike the 
modes considered in Refs. 13 and 23, the modes presented in 
this article are not subject to the assumption of stress bound- 
ary conditions which are separable in the lateral coordinates 
of the quantum wire. Accordingly, the acoustic mode dis- 
placements as well as the deformation potential Hamiltonian 
discussed in this work are exact for a free-standing cylindri- 
cal quantum wire. Additional, new results presented in this 
article include the analytic normalization of the lowest-order 
breathing and lowest-order torsional modes in a spherical 
quantum dot. The fact that these modes can be normalized 
analytically is especially significant since the symmetries of 
these modes indicate clearly that it is essential to use con- 
fined acoustic modes in modeling acoustic-phonon-assisted 
processes in nanoscale spherical crystallites. In particular, it 
is clear from the depiction of the quantum-dot modes in Fig. 
2 that bulk, or plane wave, acoustic phonons do not possess 
the correct spatial symmetries. Accordingly, the acoustic 
phonons modes for spherical quantum dots presented in this 
article provide the basis for properly calculating acoustic- 
phonon-assisted processes. Finally, the approximate flexural 
thickness modes of a quantum dot with rectangular faces 
have been normalized to illustrate the proper quantization 
procedure for the acoustic phonon modes in these nanostruc- 
tures. It is expected that such quantum dot modes will be 
useful in modeling phonon bottleneck effects in quantum 
dots. In conclusion, this article provides quantized acoustic 
phonon modes and associated deformation potential Hamil- 
tonians which are necessary for modeling carrier-acoustic- 
phonon interactions in a variety of mesoscopic devices. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the many fruitful 
discussions with Dr. G. J. Iafrate, Dr. J. W. Mink, Professor 
M. A. Littlejohn, Dr. Mitra Dutta, Professor V. Mitin, N. 
Bannov, and Dr. H. Everitt. The authors would also like to 
thank Professor M. N. Wybourne for information on recent 
experimental evidence on acoustic-phonon confinement. The 
authors are also grateful to Patricia Lassiter for the excellent 

preparation of the manuscript. This research was supported, 
in part, by the U.S. Army Research Office and the Office of 
Naval Research. 

1 See, for example, M. A. Stroscio, G. J. Iafrate, K. W. Kim, M. A. Little- 
john, A. Bhatt, and M. Dutta, in Integrated Optics and Optoelectronics, 
edited by K.-K. Wong and M. Razeghi (SPIE, Bellingham, WA, 1993), 
Vol. CR-45, p. 341. 

2J. Seyler and M. N. Wybourne, Phys. Rev. Lett. 69, 1427 (1992); A. 
Tanaka, S. Onari, and T. Arai, Phys. Rev. B 47, 1237 (1993). 

3Z. V. Popovic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K Ploog, 
Phys. Rev. B 48, 1659 (1993). 

4 P. V. Santos, A. K. Sood, M. Cardona, K. Ploog, Y. Ohmori, and H. 
Okamoto, Phys. Rev. B 37, 6381 (1988). 

5 Y. F. Chen, J. L. Shen, L. Y Lin, and Y. S. Huang, J. Appl. Phys. 73,4555 
(1993). 

6A. Potts, M. J. Kelly, C. G. Smith, D. G. Hasko, J. R. A. Cleaver, H. 
Ahmed, D. C. Peacock, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, J. 
Phys: Condens. Matter 2, 1817 (1990). 

7C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, R. Fisher, H. Morkoc, and 
A. C. Gossard, Phys. Rev. B 31, 2080 (1985). 

8R. Bhadra, M. Grimsditch, I. K Schuller, and F. Nizzoli, Phys. Rev. B 39, 
12456 (1989). 

9M. Grimsditch, R. Bhadra, and I. K. Schuller, Phys. Rev. Lett. 58, 1216 
(1987). 

I0See, for example, S. Tamura and F. Nori, Phys. Rev. B 41, 7941 (1990). 
11N. Bannov, V. Mitin, and M. Stroscio, in Proceedings of the 1993 Inter- 

national Semiconductor Device Research Symposium, edited by M. Shur 
and E. Towe (University of Virginia Press, Charlottesville, VA, 1993), p. 
659. 

12 M. A. Stroscio and K W. Kim, Phys. Rev. B 48, 1936 (1993); M. A. 
Stroscio, G. J. Iafrate, K W. Kim, S. Yu, V. Mitin, and N. Bannov, in 
Proceedings of the 1993 International Semiconductor Device Research 
Symposium, edited by M. Shur and E. Towe (University of Virginia Press, 
CharlottesviUe, VA, 1993), p. 873. 

13 K. W. Kim, S. Yu, M. U. Erdogan, M. A. Stroscio, and G. J. Iafrate, in 
Ultrafast Phenomena in Semiconductors, edited by D. K Ferry and H. M. 
Van Driel (SPIE, Bellingham, WA, 1994), Vol. 2142, p. 77. 

MT. Takagahara, Phys. Rev. Lett. 71, 3577 (1993). 
15 A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th 

ed. (Dover, New York, 1944), p. 288. 
16 B. A. Auld, Acoustic Fields and Waves (Wiley, New York, 1973). 
17 V. G. Grigoryan and D. G. Sedrakyan, Sov. Phys. Acoust. 29, 281 (1983). 
18 H. Benistry, C. M. Sotoraayor Torres, and C. Weisbuch, Phys. Rev. B 44, 

10945 (1991). 
19 R. de la Cruz, S. Teitsworth, and M. A. Stroscio, Superlatt. Microstruct. 

13, 481 (1993). 
20 H. Noguchi, J. P. Leburton, and H. SakaW, Phys. Rev. B 47,15593 (1993). 
21 This form of the deformation potential was introduced originally by J. 

Bardeen and W. Shockley; numerous texts present the derivation of this 
deformation potential and an especially clear exposition of its derivation 
may be found in K Hess, Advanced Theory of Semiconductor Devices 
(Prentice Hall, Englewood Cliffs, NJ, 1988), p. 90. 

UH. J. McSkimin, Bell Syst. Tech. J. 23, 151 (1944). 
23 R. W. Morse, J. Acoust. Soc. Am. 22, 219 (1949). 

J. Appl. Phys., Vol. 76, No. 8, 15 October 1994 Stroscio et a/. 4675 



PHYSICAL REVIEW B VOLUME 51, NUMBER 7 15 FEBRUARY 1995-1 

Electron-acoustic-phonon scattering rates in cylindrical quantum wires 

SeGi Yu* and K. W. Kim 
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911 

Michael A. Stroscio and G. J. Iafrate 
U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709-2211 

(Received 1 December 1994) 

The electron-acoustic-phonon scattering rates in a cylindrical quantum wire are studied. Considering the 
quantum wire as an elastic continuum, the confined-phonon dispersion relation is calculated for two cardinal 
boundary conditions: free-surface and clamped-surface boundary conditions. The scattering rates due to the 
deformation-potential interaction are obtained for these two confined phonons and are compared with those of 
bulklike phonons. The results show that the inclusion of acoustic-phonon confinement effects may be crucial 
for calculating accurate low-energy-electron scattering rates in nanostructures. It is also demonstrated that the 
anisotropy should not be ignored for materials of cubic symmetry. 

Proposed applications of mesoscopic electronic structures 
involve carrier transport at low temperatures and low carrier 
energies. In many cases, the regime of interest is one where 
dimensional confinement modifies the phase space substan- 
tially. In this low-temperature, low-energy regime,1-7 acous- 
tic phonons play an enhanced role in carrier scattering and 
may dominate over the scattering of carriers by optical 
phonons. Furthermore, in nanoscale structures it is possible 
that phase-space restrictions may weaken or forbid optical- 
phonon scattering processes that would normally dominate in 
bulk structures. In recent years, there has been an extensive 
literature on the role of dimensional confinement in modify- 
ing longitudinal-optical phonon modes and their interactions 
with charge carriers in nanoscale and mesoscopic semicon- 
ductor structures (see, for example, Refs. 8-10, and the nu- 
merous papers referenced therein); however, there are rela- 
tively few treatments dealing with the role of dimensional 
confinement in modifying acoustic-phonon modes and their 
interactions with charge carriers.1-3,11,12 In particular, few ef- 
forts have been reported that formulate a theory of the 
electron-acoustic-phonon interaction in nanoscale structures 
where the treatment of acoustic-phonon confinement effects 
may be essential.13-15 The need for such theoretical treat- 
ments has been demonstrated recently by experimental 
studies1-5-7,11 providing both direct and indirect evidence of 
the importance of acoustic-phonon confinement in reduced- 
dimensional electronic structures. In this paper, we present 
golden-rule scattering rates for the electron interaction with 
confined acoustic phonons in a mesoscopic quantum wire 
with cylindrical geometry. A quantized description of 
acoustic-phonon modes (developed under the elastic- 
continuum model) is used to formulate the deformation- 
potential Hamiltonian. As for the case of rectangular quan- 
tum wires,14 it is found that a proper treatment of confined 
acoustic phonons in cylindrical quantum wires may be cru- 
cial to correctly model electron-scattering rates at low ener- 
gies in nanoscale structures. 

In the limit of long-wavelength acoustic phonons, it is 
sufficient to treat the material as an elastic continuum. A 
number of experiments confirm the usefulness of the con- 

tinuum model in nanostructures.3"5,7 A cylindrical quantum 
wire of infinite length in the z direction with radius a is 
assumed for materials of isotropic symmetry. In this paper, 
we consider only the longitudinal modes of the confined 
acoustic phonons since the dominant contribution to the 
electron-acoustic-phonon interaction through the deforma- 
tion potential comes from these modes. These longitudinal 
modes are well established in an isotropic medium of a 
cylinder,16 and the normalization of confined phonons and 
the deformation Hamiltonian have been reported previously 
in Ref. 15. The acoustic waves move in radial planes without 
an azimuthal angle dependence, and the displacements are 
given by 

ur(r,z) = — {BJ0(kdr)+AJ0(k,r)} 
dr 

,i(kz-at) 

uz(r,z) = i -*? 
kBJ0(kdr)+—AJ0(k,r) ,i(kz-wl) 

(la) 

(lb) 

where J0 and Jt are the ordinary Bessel functions, A and B 
are constants to be determined later, to is an angular fre- 
quency, and k is the z-component wave vector. In addition, 
kd and k, are represented as 

*2,- 
& 

-k2 

J
d.t 

(2) 

where vd (v,) is the longitudinal (transverse) velocity. The 
longitudinal waves are coupled modes of axial and radial 
modes that have the quantized wave vectors k, and kd, re- 
spectively. In a cylinder, these two partial waves are coupled 
to satisfy the boundary condition (BC) at the surface in a 
manner similar to that for Lamb waves in a free isotropic 
plate.16 

The general BC's foMhe confined acoustic phonons are 
that the^displacement («) and the normal components of 
stress (Tn), or the fractional force, are continuous across 
surfaces where the elastic properties change discontinuously. 
For simple cases, there are two cardinal BC's: the free- 
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surface BC (FSBC) and the clamped-surface BC (CSBC). 
The free surface is a boundary between an elastic material 
and vacuum where the normal components of the stress ten- 
sor are zero and the displacement is unrestricted. The 
clamped surface is a boundary between an elastic material 
and a perfectly rigid material where the displacement is zero 
and the normal components of the stress tensor are unre- 
stricted. Although most quantum wires are not surrounded by 
vacuum or by an extraordinarily hard material, the use of 
these two cardinal BC's is employed frequently in classical 
acoustics for cases where analytical solutions are hard to 
find. Furthermore, the calculation for the FSBC case may be 
applied to free-standing quantum wires fabricated by lateral 
etching techniques. As a result, we have adopted these two 
BC's to investigate the electron-acoustic-phonon interaction 
in the present paper. 

The dispersion relations of confined phonons and the con- 
stant ratios ß=BIA are obtained from the BC's. The disper- 
sion relation for confined phonons with the FSBC is 

2-.2 (k'-kf) 
(kda)J0(kda) 

Ji(kda) 
-2k2(k2 + k2) 

. 7(kta)J0(kta) 
+ 4k2k2    '. ,.    ,'    =0,      (3) 

and that for phonons with the CSBC is 

,(*,a)/0(A:,fl)        (kda)J0(kda) 
k~A———;—+ Ar  Ji(k,a) Ji(kda) 

= 0. (4) 

(On the other hand, the bulklike phonons are dispersionless; 
i.e., phase velocity is constant with respect to the wave vec- 
tor.) The constant ratios for ß are given by 

kt(k
2-k2) Jx{kta) 

2k'kd    Jx{kda) 

for FSBC and 

k- J0{kta) 
ß    l?J0{kda) 

for CSBC. The individual values of A and B are determined 
by phonon normalization.15 

The Hamiltonian describing the deformation-potential 
interaction for the electron and the acoustic phonon is ex- 
pressed such that Häe{=-EaV -u, where Ea is the defor- 
mation-potential constant. Hence, in the confined phonon 
case the longitudinal modes are more important than tor- 
sional and flexural modes as discussed before. In the bulklike 
phonon case, only the modes vibrating parallel to the propa- 
gation direction contribute to the scattering rates, and accord- 
ingly the transverse velocity does not appear. The electrons 
confined in a cylindrical quantum wire are assumed to be the 
ground state in the extreme quantum limit. Finally, the scat- 
tering rates for the deformation potential are calculated using 
standard procedures and assuming the Fermi golden rule. 

Although it is mathematically easy to treat acoustic waves 
in an isotropic material, there are few materials of isotropic 
symmetry. Furthermore, the symmetry of most semiconduc- 

tor materials of interest is not isotropic but cubic. The acous- 
tic waves in these materials may be determined directly for 
the case of the cubic symmetry or through proper analysis 
under the assumption that the material is isotropic. The 
acoustic-wave equation, or Christoffel equation, for the cyl- 
inder may be solved by the first approach, but there is great 
complexity due to the extra elastic constant that prevents one 
from extracting any information from the algebraic results. 
Accordingly, we follow the second method and analyze a 
range of solutions. Due to the potential technological impor- 
tance of the GaAs quantum wire, calculations are confined to 
the case of GaAs that has cubic symmetry. This calculation 
can be extended to other materials of cubic symmetry with- 
out difficulty. 

In isotropic materials, the slowness curve, or the inverse- 
velocity curve, which gives the magnitude of kloj as a func- 
tion of its direction, consists of two concentric circles inde- 
pendent of the acoustic-wave-propagation characteristics.16 

On the other hand, the slowness curve for materials of cubic 
symmetry is more complicated than that for isotropic mate- 
rials. But for the case of some special directions, the curve 
takes a simple form. For the propagation along any crystal 
axis, the curve is represented by two concentric circles that 
represent the pure shear wave and the pure longitudinal wave 
as for isotropic materials. As a result, it is possible to employ 
the isotropic assumption for GaAs as long as we consider 
propagation in the [001] direction; i.e., the case that one of 
the crystal axes coincides with the z direction. This is the 
condition we consider throughout the calculation. 

Two different parameter sets are applied in order to deter- 
mine the effect of the anisotropy of GaAs as well as to quan- 
tify the range of possible deformation-potential scattering 
rates for cylindrical quantum wires. The first set, denoted as 
PS1, is chosen such that the experimentally determined vd 

and Poisson ratio a fix the value of v, from the isotropic 
assumption (PS1: urf=4.78xl05 cm/sec, i/,=2.56X 10s 

cm/sec, o-=0.33).17 The second set is obtained by taking 
vd and v, as the velocities of GaAs [001] propagating acous- 
tic waves; these velocities yield a value for a (PS2: 
y(,=4.78X105 cm/sec, v,=235X.\& cm/sec, <r=0.018). 
For both sets, the deformation-potential constant Ea and the 
lattice temperature are assumed to be 7.8 eV and 77 K, re- 
spectively, and five lowest modes are considered. 

The scattering rates for the deformation-potential interac- 
tion of the electron with the FSBC (PS1, PS2) and the bulk- 
like phonons are plotted in Fig. 1 as functions of electron 
energy. The important fact is that the FSBC scattering rates 
are very sensitive to the velocity of the confined phonon. The 
scattering rates corresponding to the PS1 and PS2 parameter 
sets differ substantially; indeed, the difference amounts to 
several orders of magnitude in the low-electron-energy re- 
gion. This difference is due mainly to the different transverse 
velocities. To investigate the dependence of the scattering 
rate on velocity further, we have also considered other pa- 
rameter sets that take the same values of PS1 except the 
value of vt. The value of v, is changed continuously from 
that of PS1 to that of PS2. In these cases, the scattering rates 
increase continuously with the increase in the value vt. In 
particular, the enhancement is especially strong in the low- 
electron-energy region. The scattering rates with v, having 
the value of PS2 are much higher than for PS1, and are very 
similar to those of the PS2 case. This finding is in striking 
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FIG. 1. Scattering rates for the deformation-potential interaction 
of electrons with the FSBC confined acoustic phonons (PS1, PS2) 
and bulklike phonons in a cylindrical GaAs quantum wire (radius of 
22.6 A) at 77 K as a function of electron energy. Solid (dashed) 
lines are for the PS1 (PS2), and dashed-dotted lines are for the 
bulklike phonons. The plotting resolution depicted is not fine 
enough to illustrate fully the importance of the density-of-states 
effects in the quantum wire. 

contrast to the case of PS1 considering that those two differ 
only in the value of vt. A careful analysis reveals that the 
difference in the scattering rates (and, subsequently, the de- 
pendence on vt) is associated with the lowest-phonon 
branch. As shown in Fig. 2, the lowest mode for the confined 
phonons with the FSBC has no cutoff frequency unlike the 
cases for the other higher modes. Hence the quantized wave 
vector kt, defined in Eq. (2), of this lowest mode is very 
sensitive to the choice of v, while the other are not. The 
magnitude of \, (=2ir/k,), which corresponds to the char- 
acteristic wavelength of the axial partial wave, is a measure 
of the phonon amplitude. Since the deformation Hamiltonian 
is proportional to phonon amplitude, large values of X.,, i.e., 

2.5 
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3 

1.5 

0.2 0.4 

ka/rt 

FIG. 2. Dispersion relation of the five lowest confined acoustic 
photons with the FSBC (solid lines) and the CSBC (dashed lines) in 
a cylindrical GaAs quantum wire. The value of the Poisson ratio 
o- is 0.018 and v0 represents the sound velocity of Young's module 
mode. 
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FIG. 3. Scattering rates for the deformation-potential interaction 
of electrons with the CSBC confined acoustic phonons (PS1, PS2) 
and bulklike phonons in a cylindrical quantum wire (radius of 22.6 
A) at 77 K as a function of electron energy. Solid (dashed) lines are 
for the PS1 (PS2), and dashed-dotted lines are for the bulklike 
phonons. As in Fig. 1, the plotting resolution is limited. 

small k, (or large v,), imply large scattering rates for the 
deformation potential. Thus, the scattering rates are strongly 
affected by acoustic-phonon velocity; consequently, the 
electron-phonon scattering rate in a GaAs quantum wire is 
highly dependent on the direction of the phonon propagation 
due to the anisotropy of GaAs. 

Figure 3 depicts the scattering rate for the case of con- 
fined phonons with the CSBC; this plot exhibits smaller scat- 
tering rates in comparison with the case of the FSBC. The 
relatively small scattering rates are expected from the inspec- 
tion in the functional form of the displacement. Since the 
CSBC requires the displacement at the boundary to be zero, 
the displacement of the lowest mode has maximum value at 
the center of the cylinder while its derivative (or divergence) 
is very small. This small divergence of the phonon displace- 
ment makes the electron-phonon coupling small since the 
electron's ground-state wave function has its maximum at 
the center. At the same time, the acoustic phonons with the 
CSBC generally have higher energies than those with the 
FSBC since every CSBC acoustic phonon has a cutoff fre- 
quency as shown in Fig. 2. It is difficult for the electron to 
emit or absorb phonons with higher energies. As a result, the 
relatively high energy characteristics of phonons and the 
small electron-phonon coupling make the scattering rate for 
the CSBC smaller than that for the FSBC. Another interest- 
ing point to note with the CSBC is a weak dependence on 
phonon velocity due to the existence of cutoff frequencies, as 
in the case of higher modes with the FSBC. From Figs. 1 and 
3 it can be concluded that confined phonons (both with the 
FSBC and the CSBC) exhibit larger scattering rates than for 
the bulklike phonon case. Particularly in the low-electron- 
energy region, confined phonons exhibit much larger values 
as well as several peaks reflecting the characteristics of the 
one-dimensional density of state. Besides the large differ- 
ences in values of scattering rates, the deformation-potential 
Hamiltonian for the bulklike phonon does not include the 
dependence on transverse velocity, which fnay have an im- 
portant role in anisotropic materials. 

Finally, in Fig. 4, we compare the scattering rates for a 
cylindrical and a rectangular wire. In the cylindrical wire 
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FIG. 4. Scattering rates for the deformation-potential interaction 
of electrons with the confined acoustic phonons in a cylindrical 
(dashed line) and a rectangular GaAs quantum wire (solid line). An 
identical cross section is chosen for the two wires (cylindrical wire 
of radius 22.6 Ä, rectangular wire of 28.3 X 56.6 Ä2) and the values 
of parameters are the same as in Ref. 14. In the cylindrical wire 
confined phonons with FSBC are used, and the separable solutions 
for confined phonons are adopted for the rectangular wire as dis- 
cussed in Ref. 14. For comparison, the rate with the bulklike 
phonons for the cylindrical wire is also plotted (dashed-dotted line). 
As in Figs. 1 and 3, the plotting resolution is limited. 

confined phonons with FSBC are used, and an approximate 
solution as described in Ref. 14 is adopted for the rectangular 
geometry. The values of the parameters are taken to be those 
used in Ref. 14 ([>,,=4.78X105 cm/sec, v,=335X10? 
cm/sec, cr=0.33). When comparing two wires having a 
same cross-sectional area (cylindrical wire of radius 22.6 A, 
rectangular wire of 28.3X56.6 Ä2), we find that there is a 
resemblance between the scattering rates for these two wires. 
Since the scattering rates for the rectangular and the cylin- 

drical wires using bulklike phonons are very close, only the 
cylindrical-wire case is plotted to facilitate clear presentation 
of the results. The nearly identical scattering rates for the 
bulklike phonons can be easily understood, considering that 
the coupling between the electrons and the bulklike phonons 
are essentially the same in these two wires with the same 
cross-sectional area. For the confined acoustic phonons, the 
cylindrical wire exhibits considerably larger scattering rates 
than the corresponding rectangular wire. Aside from the dif- 
ference in the functional form of the electron-phonon cou- 
pling (i.e., the difference in electron and phonon envelope 
functions), the gap in the magnitudes of the scattering rates 
between the cylindrical wire and the rectangular wire may be 
at least partly due to the incompleteness of the separable 
solutions used in the rectangular wire. However, the overall 
similarity between the rates obtained in two wires demon- 
strates the fact that the approximate theory developed previ- 
ously for a rectangular wire14 may be considered a valuable 
guideline for calculating the scattering rates in such a geom- 
etry, where an exact analytical solution does not exist. 

In conclusion, we have calculated the scattering rates for 
the electron and several kinds of confined acoustic phonons 
through the deformation-potential interaction in a cylindrical 
quantum wire. It is found that confined phonons produce 
larger scattering rates than the bulklike phonons, and the 
scattering rates are highly dependent on the phonon propa- 
gation velocity. In addition to its relatively small scattering 
rates, the use of bulklike phonons in calculating electron- 
acoustic-phonon scattering rates may be flawed due to the 
neglect of anisotropic dependence on transverse velocity, 
which is of potential significance in many semiconductor 
materials and nanostructures. 
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Electron-acoustic-phonon scattering in a rectangular quantum wire is studied. The Hamiltonian 
describing the deformation-potential interaction of confined acoustic phonons with carriers is derived by 
quantizing the appropriate, experimentally verified approximate compressional acoustic-phonon modes 
in a free-standing rectangular quantum wire. The scattering rate due to the deformation-potential in- 
teraction is obtained for GaAs quantum wires with a range of cross-sectional dimensions. The results 
demonstrate that a proper treatment of confined acoustic phonons may be essential to correctly model 
electron scattering rates at low energies in nanoscale structures. 

I. INTRODUCTION 

A number of proposed applications of mesoscopic elec- 
tronic structures involve carrier transport at low temper- 
atures and low carrier energies; frequently, the regime of 
interest is one where dimensional confinement modifies 
the phase space substantially.   It is well known that in 
this  low-temperature,  low-energy  regime,1  6   acoustic 
phonons play an enhanced role in carrier scattering and 
may dominate over the scattering of carriers by optical 
phonons. In addition, in nanoscale structures it is possi- 
ble that phase-space restrictions may weaken or forbid 
optical-phonon scattering processes that would normally 
dominate in bulk structures. Recently, there has been an 
extensive    literature    on    the    role    of   dimensional 
confinement in modifying longitudinal-optical (LO) pho- 
non modes and their interactions with charge carriers in 
nanoscale and mesoscopic semiconductor structures (see, 
for example, Refs. 7-12 and the numerous papers refer- 
enced therein).  On the other hand, there are relatively 
few treatments dealing with the role of dimensional 
confinement in modifying acoustic-phonon modes and 
their interactions with charge carriers.2 4'13,14 In spite of 
the fact that there is an extensive literature on the theory 
of acoustic modes in conventional waveguides, resona- 
tors, and related structures, few efforts have been report- 
ed on formulating a theory of acoustic phonons in nano- 
scale structures, where both phonon confinement and a 
quantum-mechanical treatment of phonon normalization 
are essential.   The necessity for such theoretical treat- 
ments has been demonstrated recently by experimental 
studies providing both direct and indirect3,4 evidence of 
the importance of acoustic-phonon confinement in re- 
duced dimensional electronic structures. 

In this paper, we have obtained the normalized expres- 
sions for acoustic phonons confined in a free-standing 
rectangular quantum wire by appropriately quantizing 

the acoustic-phonon displacements. As is well known, 
there are no exact solutions for the complete set of pho- 
non modes for a rectangular quantum wire; nevertheless, 
as for the case of LO phonon modes,8 the approximate 
modes presented in this work provide simple and useful 
expressions, which are well suited for modeling the in- 
teraction of carriers with acoustic phonons. As a basis 
for investigating the role of reduced dimensionality on 
the coupling between acoustic phonons and carriers, we 
have formulated the interaction Hamiltonian for the de- 
formation potential associated with confined acoustic- 
phonon modes in rectangular quantum wires. The result- 
ing scattering rates (based on the golden rule approxima- 
tion) are compared with those obtained from the bulk- 
phonon modes. For numerical calculations, GaAs is used 
as the material of choice throughout this study. 

II. QUANTIZATION OF COMPRESSIONAL 
ACOUSTIC-PHONON MODES 

FOR A RECTANGULAR QUANTUM WHtE 

The compressional, or dilatational, acoustic-phonon 
modes in free-standing rods of rectangular cross section 
have been examined both experimentally15 and theoreti- 
cally16,17 by Morse in an extended study. Morse has de- 
rived an approximate set of hybrid compressional, or di- 
latational, acoustic-phonon modes,16,17 which are found 
to accurately approximate the experimentally observed 
modes over a wide range of conditions.13 Specifically, 
Morse has found that the approximate hybrid modes de- 
rived by assuming separable boundary conditions • 
have simple analytical representations and provide con- 
venient approximations for the rectangular geometry 
when the cross-sectional dimensions have aspect ratios of 
approximately 2 or greater. For smaller aspect ratios 
(i.e., close to 1), Morse has argued correctly that it is 
necessary to turn to numerical solutions since exact 

0163-1829/94/5<X3)/1733(6)/$O6.0O 50      1733 © 1994 The American Physical Society 
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FIG. 1. Schematic drawing of a free-standing rectangular 
quantum wire considered in the analysis of electron-acoustic- 
phonon scattering. 

analytical solutions for the compressional acoustic- 
phonon modes in a rectangular structure are not expressi- 
ble analytically. In this paper, we shall restrict our 
analysis to rectangular quantum wires with aspect ratios 
of 2 or greater. 

As depicted in Fig. 1, we consider a free-standing rec- 
tangular rod of infinite length in the z direction having an 
x-directed height (or thickness) 2a, and a ^-directed width 
2d; the origin of coordinates in the x-y plane is taken to 
be at the geometric center of the rectangular cross sec- 
tion, and the x-, y-, and z-directed acoustic-mode dis- 
placements are represented, respectively, by 

u ,=«(*, j0e,'r,r_c" , 

u1=u(x,y)e,>(z-c" , 

w^wix^e1^-^ , 

(1) 

(2) 

(3) 

where y=2v/X, X being the wavelength, y is the z- 
directed free wave vector, and c is the phase velocity. 
Adopting Morse's form for the approximate separation- 
of-variables solution, the compressional waves for the 
"thickness" modes may be represented by 

u = [ A sink^+B sink2x}cos{hy) , (4) 

v = -— A cosk lx + C cosk2x sin( hy) , 

w = i _JL 1 A cos^x-l (k2B+hC)cosk2x 

where 

k\+h2 = y2[{c/cd)
2-\), 

k2
2+h2=y2[(c/cs)

2-l] , 

cos(hy) , 

(6) 

(7) 

(8) 

and the compressional, or dilatational, sound speed cd, as 
well as the transverse, or shear, sound speed cs, are ex- 
pressed in terms of the Lame constants k' and p.: 

cj = (X' + 2p)/p , (9) 

c2=p/p , (10) 

with p being the density of the medium. Substituting 
Eqs. (4)-(6) into the conditions that the Txx, Tyx, and Ta 

stress components vanish at x = ±a, it follows that simul- 
taneous equations for the amplitudes A, B, and C are 
given by 

2Ah sinkla+Bh sink2a+Ck2smk2a=0 , (11) 

-A(y2+h2-k\)coskla+2Bklk2cosk2a=0 , (12) 

2/H/i2+y2)smA:1a+5(y2+/i2-&2
:)sinfc2a=0 .        (13) 

When k^O, the condition that the determinant of 
coefficients vanishes requires that 

tan/c2a_     4ktk2(h2+y2) 

tan/c,a~     (h2+yi-k^ ' 
(14) 

which serves as the dispersion relation; this result is simi- 
lar to the corresponding dispersion relation for the case 
of a slab.18 Using Eq. (13) to solve for B in terms of A 
and applying the resultant expression in conjunction with 
Eq. (11) to solve for C in terms of A, Eqs. (3)-(6) may be 
written as 

ux = A [sink]x+asink2x}cos(hy)e'riz   e,) , 

vx = A -—cosk ,x+ß cosk2x sin{ hy)e iy(z-ct) 

(15) 

(16) 

w, =iA _JL 1 
,   cos&(;H—(,k7a+hß)cosk2x 
/c, y 

Xcos{hy)eiri*-a) , 

where a and ß are defined by 

sinfc1a     2(A2+y2) 
B — ; ,—— A —a A 

smk2a (y2+h2-k\) 

(17) 

(18) 

(5)      and 

C-- 
k-,h 

h2+y2 B = 
sinfc(a 2k2h 

sink2a (y2-¥h2-k\) 
 T~A=ßA . 

(19) 

Following the quantization procedure of Ref. 14, the nor- 
malization constant may be determined by quantizing the 
phonon modes so that, 

-L f+°dxf+ddy[uu*+vv' + ww*} = TT7—,     (20) 
dad J -a       J -A      l '      2MV» Add 

where ay is the radial frequency of the mode with wave 
vector y. Performing the indicated integration, Eq. (20) 
yields the amplitude A in terms of the following equa- 
tions: 
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fx(h,d)[f2{kx,a)+2agx(kx,k2,a)+a2f2(k2,a)]-fx(h,d) 

+fx(h,d) 
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^fl(kl,a)+yp-g2{kl,k2,a)+ß1fl(k2,a) 
k\ k "i 

2 2 ... - (k2a+hß)2 

^Tfx(ki,a)-^(k2a+hß)g2(kx,k2,a)+ , 
k, kx Y 

fx{k2,a) 

+2d ^rfx(kx,a) + ^-g2(kx,k2,a)+ß2fx(k2,a) 
k\ k\ 

where 

fx(h,d)=d 1 + 
sin(2hd) 

(2hd) 

f2(h,d)=2d-fx{h,d), 

sin(kx— k2)a 

sin(fcj — fc2)
fl 

ft(*l.*2.«)"       (fcj_fc2) 

Henceforth, .4 2 is written as 

Hi 

sin(kx+k2)a 

(kx+k2) 

sm(kx+k2)a 

(kx+k2) 

A2=- 
McorB) 

(22) 

(23) 

(24) 

(25) 

(26) 

where By is denned straightforwardly by Eqs. (21) and 
(26). 

In accordance with the solutions of Morse, the 
boundary conditions at y = ±d determine the value of h; 
however, the adjustment of h alone is sufficient to make 
Tvv, Txv, and T„ vanish at y = ±d.   For aspect ratios Lyy' 

lxy> yy • *.y • +j ~ t , 

where the width of the rectangular cross section (2a) is 
greater than or approximately equal to twice the height 
(2a), this problem can be circumvented since the two 
shear stresses Txy and T^ become negligible. According- 
ly, Morse chooses h so that the extensional stress Tyy 

vanishes; this condition requires 

hd={n+\)ir n =0,1,2,... (27) 

The principal propagation mode (i.e., n =0 or h =ir/2d) 
has no nodal surfaces parallel to the length. Motivated 
by the analysis in Sec. Ill, as well as by Morse's experi- 
mental observation that the principal mode is dom- 
inant,15 the present paper considers the n =0 case for the 
thickness modes in numerical calculations. In addition to 
the thickness modes, another set of acoustic modes is ob- 
served experimentally.15,16 These modes correspond to 
"width modes" and are determined in a manner similar 
to that used to determine the thickness modes. By satis- 
fying the boundary conditions on the stress at y = ±d, the 
solutions for the width modes show expressions analo- 
gous to Eqs. (15)—(17) with the roles of x and y as well as 
k and h interchanged, respectively. For these modes, k is 
then determined by approximate boundary conditions at 
jc = ±a.16 The dispersion relation for the width mode is 
identical in form to Eq. (14), and the normalization pro- 
cedure for proper quantization is as described in Eq. (20). 
As for the thickness modes, only the principal mode with 

2May ' 
(21) 

k —0 is considered for the width modes. 
We have calculated acoustic-phonon frequencies as a 

function of wave vector y for the thickness and width 
modes in GaAs quantum wires. For this purpose, Eq. 
(14) may be written as 

tan(7rV/7=:?) _    Mfr/iF^ef-p 
tan(TrV^pqp) (2tf-X

2)2 

where 

X2=sHc/cs)
2 , 

if>2=s2+(ah/ir)2 , 

s=ay/ir , 

e=(cs/cd)
2=(\-2<T)/2{l-a) , 

(28) 

(29) 

(30) 

(3D 

(32) 

and a is Poisson's ratio. Due to the periodic nature of 
trigonometric functions, the phonon frequency ay (=cy) 
has multiple solutions for a given y and n (i.e., fixed h or 
k). Thus, an additional index m is needed to distinguish 
different modes. Figures 2 and 3 depict dispersion curves 
of the six lowest thickness modes (A=ir/2d, 
m = 1,..., 6) and the corresponding width modes (k =0, 
m = l, ...,6). The 
sions are chosen 
50X200 A2 for Fig. 3, respectively. As expected, the 
width modes tend to have lower energies than the thick- 

, tne correspunumg mum muu« \i*    «, 
le quantum wire cross-sectional dimen- 
to be 28.3X56.6 A2 for Fig. 2 and 

i—i—i—i—i—i—i—i—'—i—i j _■ ; i_i_i--l-T='lr= 

28.3 Ä x 56.6 A 

> 
0) 

>. 
O) 
i_ 
0) c 
LU 

2 4 6 8 10 12 

Phonon Wave vector (10$ cm"1) 

FIG. 2. Dispersion curves for the six lowesUvidth and thick- 
ness modes (m = 1,... ,6) of a 28.3X56.6-Ä  GaAs quantum 

•wire. The solid lines are for the width modes and the dashed 
lines are for the thickness modes. 
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> 
0) 
E, 
>. 
oi 
0) c 
HI 

PhononWave vector (106 cm"1) 

FIG 3. Dispersion curves for the six lowest width and thick- 
ness modes (m = 1,... ,6) of a 50X200-Ä GaAs quantum wire. 
The solid lines are for the width modes and the dashed lines are 
for the thickness modes. 

ness modes, since the width is greater than the thickness 
for each of the cases represented in these figures. 

Ill  ELECTRON-ACOUSTIC-PHONON SCATTERING 
RATES IN A RECTANGULAR QUANTUM WIRE 

The deformation-potential interaction of the thickness 
mode is describable in terms of the Hamiltonian Hde{, 

#rf,f=£flV-u(r) 

=Ea 2 [c»,M(r>+<£„(-r>] 
y,n,m 

X 
du  .  dt>  , - —- + —+iyw 
dx     dy 

,iyz (33) 

where cn,Jy) and 4,m(-y) are the usual annihilation 
and creation operators and 

u(D= 2 [cn,jY)+cU-Y)Wx>y,r*ir* •       (34) 

y,n,m 

"°r' is not included in Eqs. The time-dependent factor e 
(33) and (34), since it will be included in the energy- 

conserving 8 function in the golden rule. In Eqs. (33) and 
(34), the sum over y represents the usual integration over 
wave vector, while the sums over n and m represent the 
addition of the various acoustic-phonon modes. For the 
normalized compressional, or dilatational, modes of Sec. 
II, it follows that 

coz 
Hde{=  2  EaA-^-cos(klX)cos(hy) 

cdK\ y,n,m 

x[c„,m(y)+<m(-r)]<?"'r. (35) 

where co2=c2y2. Assuming the extreme quantum limit, 
the ground-state effective-mass electronic wave function 

is given by 

1 

and the eigenenergy is 

*2 

TTX 

la 
cos 

Id 
,"p 

E = 
2m 

v2   +. «* 
(2a)2     (2d)2 

+q< 

(36) 

(37) 

Hence, the matrix element (q'lH^Jq > is given by 

col        i^sink^a 

((n+i)f[l-(n+{)2]) 

x[cn,m(y)+ctJ-y)]. (38) 

An examination of the n-dependent terms in Eq. (38) 
makes it apparent that they contribute to the matrix ele- 
ment squared in such a way that these terms for n -1 are 
only £ of their magnitude for n =0; a similar reduction 
occurs' in going from n =1 to n =2 and it is clear that 
only the principal mode contributes significantly to Eq. 
(38), which was derived on the assumption that the car- 
riers remain in the ground state of the extreme quantum 
limit, x-y potential. 

Hence, the Fermi golden rule scattering rate corre- 
sponding to the matrix element of Eq. (38) is given by 

7-2/    'rT-T 
EaA, 

2ir  Ü 

•n^sinfc i a 

fc^dr2-^2) (n + i)ir[l-U+j)2] 
(JV+j±|)8 

*2 
-S-(y2T2qy)±fuoy 
2m 

(39) 

where A has been written as A y to indicate the y depen-      1 = ^ f     <*y £, 
dence of Ay,L is the normalization length along the axis       r     ._    — 
of the quantum wire, and N is the usual temperature- 
dependent  Bose-Einstein  occupation  number  for  the 
acoustic phonons. Introducing By through Eq. (26) and 
defining factors Z, and Z2, Eq. (39) may be written as 

IpabB. 

at 

(cj*,) 
;Z\Z\(N + \±\) 

X8 -f-(r
2*2qy)±*cor 

2m 
(40) 

where 
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seen from Figs. 4-6, each of these modes makes a notable 
contribution to the density of states and to the scattering 
rate. In particular, the scattering rates at low energies 
show pronounced peaks and are strongly enhanced due to 
the dominance of selected compressional modes in the 
emission process. Thus, it is essential to retain a number 
of acoustic modes for an accurate estimation of scattering 
rates. The results shown in Figs. 4-6 have been obtained 
by including the six lowest-order thickness modes as well 
as the six lowest-order width modes. Due to the limited 
resolution in plotting, the details of one-dimensional na- 
ture (such as the number of peaks and their heights) are 
not illustrated fully in these figures. The second impor- 
tant feature of Figs. 4-6 is that the scattering rates for 
the case of the hybrid compressional modes are higher 
than the corresponding bulk scattering rates. These 
enhanced scattering rates provided an indication that 
conceptual designs for mesoscopic devices need to be 
based on an awareness of the fact that confined acoustic 
modes may play a significant role in carrier transport in 
these devices. As shown in Fig. 5, for the case of a 
100X200-Ä2 cross section we find similar scaling of the 
scattering rates with energy as for the case of Fig. 4; how- 
ever, the rates are approximately an order of magnitude 
lower than those for the 28.3X56.6-Ä2 quantum wire of 

Fig- 4. 
The hybrid modes considered in this paper contain 

both longitudinal and transverse components as is evi- 
dent from Eqs. (15)-(18); as expected, only the longitudi- 
nal components contribute to the deformation potential 
of Eq. (35). The appearance of a hybrid-mode dispersion 
relation, Fq. (14), similar to that for the dilatational 
modes of a slab18 is entirely reasonable, since the flexural 

modes are similar to the shear modes.19 Such modes have 
strong transverse components and they make little contri- 
bution to electron -acoustic-phonon interaction through 
the deformation potential. 

V. CONCLUSION 

The results in this analysis suggest that it may be im- 
portant to consider carrier-acoustic-phonon scattering 
processes when designing mesoscopic devices containing 
quantum-wire elements. Based on what appears to be the 
most complete set of approximate compressional modes 
available for a free-standing rectangular quantum wire, 
it is demonstrated that the details of the modal structure 
need to be taken into account if deformation-potential 
scattering is to be modeled accurately. Further analysis 
is necessary to rigorously show that deformation- 
potential scattering rates by confined acoustic phonons 
exceed the corresponding rates obtained from bulk pho- 
nons in quantum wires; however, these results provide an 
indication that acoustic-phonon scattering may be 
enhanced considerably in some nanoscale structures. 
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In numerous publications of the last several years 
[1,8], acoustic phonons have been quantized for a variety of 
nanoscale and mesoscopic structures in order to assess to 
role of electron—acoustic-phonon scattering in limiting the 
performance of nanoscale and mesoscopic electronic devices. 
These structures include quantum wells, quantum vires with 
cylindrical and rectangular cross sections, and quantum dots 
with spherical, cylindrical and rectangular boundaries. 
These quantized phonons have been studies for the two 
cardinal boundary conditions of classical acoustics: free 
boundaries (open boundaries) where the phonon displacements 
are unrestricted and allowed to balance all normal traction 
forces to zero; and clamped boundaries (rigid boundaries) 
where phonon displacements are required to vanish at the 
boundaries.  For quantum wells, scattering rates have been 
calculated for free-standing structures [4,8].  Por the case 
of quantum wires, scattering rates have been calculated only 
for the case of infinitely long quantum wires and, as 
appropriate for this case, the acoustic phonons have been 
quantized in only the lateral dimensions. However, for 
realistic mesoscopic device designs, the quantum wire input 
and output "leads" as well as the active regions of the 
devices with quantum-wire geometries have finite lengths. 
Accordingly, deformation "and piezoelectric scattering rates 
must be based on acoustic phonons that are quantized in all 
three spatial dimensions. The international community does 
not appear to have considered the role of three dimensional 
confinement of acoustic phonons in mesoscopic devices but it 
is clear from the solutions of classical acoustics that 
boundary conditions imposed at the ends of wire-like regions 
can have a profound effect on the properties of acoustic 
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modes. The results presented here are based, in part, on a 
consideration of the role of acoustic phonon confinement in 
mesoscopic devices containing finite wire-like regions. 
Based on our current understanding of such finite wire-like 
structures, we believe that it is possible to "engineer" 
mesoscopic structures so that electron—acoustic-phonon 
scattering is reduced. This reduction is likely to be most 
important in mesoscopic device which operate in the basis of 
"coherent" electron-wave interference effects. 

In the domain of. classical acoustics, especially 
revealing examples of the role of wire-like regions in 
modifying and tailoring selected acoustic mode patterns are 
those of the organ pipe and of the muffler.  In the first 
example, the open boundary conditions at the ends of the 
organ pipe result in wave reflections with the reflected and 
transmitted waves having amplitudes with the same sign at 
the ends of the organ pipe. Subject to these boundary 
conditions, the acoustic modes in an organ pipe evolve so 
that standing wave amplitudes are maximized and anti-nodes 
are formed at the ends of the pipe; that is, the dominant 
modes are those having wavelengths such that the length of a 
half-integral number of wavelengths is equal to the length 
of the pipe. Thus, an organ pipe produces sounds at well 
defined and reproducible wavelengths.  In the second 
example, a muffler suppresses sounds at exit ports through 
the use interfaces which produce modes with the required 
node and anti-node structures. 

In the case of mesoscopic devices the situation is, 
perhaps, more complex than in the case of classical acoustic 
waveguides with open boundaries since, in general, the 
boundary conditions at the ends of the quantum wires require 
that both the mode displacements and the normal components 
of the stress be continuous. However, for the case of a 
quantum wire which couples to an "end" region composed of 
the same material as that in the interior of the quantum 
wire, the open boundary condition such be appropriate. 
Thus, for, example, in the case of a quantum wire with two 
"open" ends the ambient acoustic phonons in the wire will 
evolve so that the dominant modes are those having 
wavelengths such that the length of a half-integral number 
of wavelengths equals the length of the quantum wire. Just 
as in the organ pipe these modes will have their maximum 
amplitudes at the ends of the wires; that is, anti-nodes 
will be present at the ends of the quantum wire. Similar 
behavior may be expected "for the case of free-standing 
quantum well structures. For the case of a quantum wire 
which couples to (or terminates on) a region composed of a 
material with acoustic properties different from those of 
the material in the interior of the wire, the exact boundary 
condition must, in general, be applied. From classical 
acoustics it is known that few analytical solutions are 
available for the cases where the complete boundary 
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conditions must be used. A useful simplification arises in 
the case where the material in the interior of the quantum 
wire and the material at the end of the quantum wire have 
such different properties that the phonon modes are damped 
abruptly at he interface between the two materials; in this 
case, the so-called "clamped" boundary condition is adequate 
and the modes amplitudes may be assumed to vanish at such 
interfaces.  Such a case applies at some metal-semiconductor 
interfaces.  In particular, for a mesoscopic device having 
wire-like regions which terminate on a variety of metal 
regions (regions used as contacts, gates, barriers, etc.) it 
is satisfactory to apply clamped boundary conditions. At 
these boundaries, the acoustic modes will have nodes instead 
of the anti-nodes that are established in the case of an 
open boundary. 

With this set of simplified boundary conditions it is 
possible to design mesoscopic structures with the phonons 
"engineered" to produce desired standing wave patterns. As 
an example, consider a four-terminal generalization of the 
three-terminal "tee"-shaped de Broglie wave interference 
device [9]. More specifically, consider a mesoscopic 
structure with quantum wires intersecting each other at 
right angles such that the two wire "centers" are at the 
same point.  For this structure the ends of one wire are 
taken to be open and the ends of the other wire are taken to 
be clamped. Hence, it is possible to select some acoustic 
modes such that nodes will occur in "center" of one wire and 
anti-nodes will occur at the "center" of the other wire. By 
selecting various wire lengths it is possible to define a 
standing wave pattern that either maximizes or minimizes the 
amplitudes of specific acoustic phonon modes in regions 
where the electronic wavefunctions are dominant. 
Furthermore, by "engineering" interfaces within a quantum 
wire which are perpendicular to the quantum-wire axis, it 
should be possible to control the acoustic modes in wire- 
like regions of mesoscopic devices just as the classical 
acoustic modes are controlled in a muffler. Thus, the 
deformation and piezoelectric scattering rates may be 
partially tuned by tailoring the ambient phonon standing 
wave patterns in such mesoscopic structures. 

In this effort to "engineer" the ambient phonon modes, 
the quantum-wire phonon modes obtained previously [1,8] 
should correctly describe the lateral quantization of the 
phonon modes. Elementary examples of such effects are 
implicit in the results öf Ref. [8]. The quantization along 
the lengths of the quantum wires will be treated approx- 
imately under the simplifying "open" and "clamped" boundary 
conditions to assess the extent to which mesoscopic device 
properties may be controlled through the "engineering" of 
the phonon modes in mesoscopic devices. It is emphasized 
once again that the major payoff from the "quantum 
engineering" of acoustic phonons in quantum wires is the 
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reduction of electron—acoustic-phonon scattering and the 
consequent preservation of "coherent" electron waves in 
mesoscopic devices. Achieving nearly-coherent electron 
waves nay ultimately depend sensitively on reducing 
electron—acoustic-phonon scattering even though such 
processes may be considered to be weak by normal standards. 
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The anharmonic decay of longitudinal-optical (LO) phonons in zinc-blende semiconductors has 
been studied. Based on an approach in which the anharmonic crystal potential is estimated using the 
theory of elasticity, the lifetime of LO phonons via emission of two acoustic phonons is calculated 
as a function of lattice temperature and phonon wave vector. Application of this model to bulk GaAs 
shows an excellent agreement with available experimental data. Since the parameters employed in 
the model can be obtained experimentally, the approach provides a useful tool to investigate 
LO-phonon lifetimes in semiconductors. 

In polar semiconductors carrier energy and momentum 
relaxation processes are frequently dominated by the interac- 
tion of carriers with optical phonons, particularly the 
longitudinal-optical (LO) phonons. It is now well known that 
carrier relaxation rates underlie a range of phenomena other 
than simple carrier transport. For example, carrier relaxation 
processes in semiconductor lasers play a critical role in de- 
termining the intrinsic modulation limit for high-frequency 
operation of such devices.1" Previous analyses of carrier re- 
laxation in semiconductor microstructures have demon- 
strated that emission alone does not, in general, dominate the 
carrier energy-loss rates since subsequent optical-phonon ab- 
sorption events slow the relaxation process.3'4 Instead, it has 
been shown that the overall carrier relaxation rate is fre- 
quently dominated by the decay of the strongly interacting 
optical phonon into weakly interacting acoustic phonons. 
Thus, detailed knowledge of optical-phonon decay, which is 
characterized by lifetime, is of major importance in under- 
standing carrier dynamics in semiconductors. The decay pro- 
cess of optical phonons arises primarily from the three- 
phonon interaction through the anharmonic terms of the 
crystal potential energy. This phenomenon has been scruti- 
nized by a number of authors mostly in bulk materials.5-1" 
The approaches taken by these authors can be classified 
broadly in two categories: highly complex and complete mi- 
croscopic models5-71011 with parameters which are very dif- 
ficult to measure, and simpler macroscopic treatments8,9 

where attempts have been made to approximate various an- 
harmonic contributions by replacing them with a single pa- 
rameter related to an average of third-order elastic constants 
or a Grüneisen constant. An approach similar to the latter 
treatments has been adopted recently to estimate optical- 
phonon lifetimes in heterostructures.12 The difficulty associ- 
ated with the simple approaches is to find a valid expression 
for this appropriately averaged single parameter from the ex- 
perimentally measurable quantities. 

In this communication the lifetime of LO phonons via 
emission of two acoustic phonons is studied in zinc-blende 
semiconductors as a function of lattice temperature and pho- 
non wave vector; specific results are reported for wave vec- 
tors along the (100) direction as well as for the (111) direc- 
tion. The interaction Hamiltonian for anharmonic decay is 

developed based on Keating's treatment13 of anharmonic 
contributions in elastic strain energy of a crystal. By using 
second-order and third-order elastic constants available in 
the literature and atomic displacements estimated from a mi- 
croscopic model,14 this approach is applied to calculate LO- 
phonon lifetimes in bulk GaAs, and the results are compared 
with the experimental data. 

When a crystal potential is expanded in powers of dis- 
placements of the atoms from their equilibrium positions, we 
obtain a quadratic term along with cubic, quartic, and other 
higher-order terms. For simple analysis of the dispersion re- 
lation, it is acceptable to consider only the quadratic term in 
what is known as the harmonic approximation. However, the 
harmonic approach cannot describe the decay of phonon 
modes caused by the cubic and other higher-order terms, also 
known as the anharmonic terms in the crystal potential. It is 
generally accepted that the cubic term dominates over all 
anharmonic terms in phonon decay. For this process involv- 
ing three phonons, the interaction Hamiltonian may be writ- 
ten as 

Hi k.j;k'.j':k".j" 

= -—P(k,;;k',;";k"J")ut,uk<,ruk„,/-, (1) 

where k, k', and k" (j,j', and /') represent the phonon wave 
vectors (polarization modes), respectively, N is the number 
of unit cells, and P describes the cubic coupling. The dis- 
placement for the phonon mode in normal coordinates may 
be represented as 

1/2 

«k./ = 2m i 'kj 
<M -,'kr,     t  z.-ikr\ 

k,je      +ak.;e >< (2) 

where a^j and afKj are the annihilation and creation opera- 
tors, e^; is the polarization vector, m is the average mass of 
the lattice atoms, and wt; is the frequency of the normal 
mode. For LO-phonon modes, the decay occurs mainly 
through the creation of two longitudinal-acoustic (LA) 
modes. At the same time, the normal process dominates over 
the umklapp process when the LO phonon wave vector is 
small. Retaining only this term, the decay Hamiltonian for 
LO phonons becomes 
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H k:k':k"     ^  : 2m I       twkwk.Wk» 

x/'(k:k';k")akflk,ßk„c"k-k'-k",r. (3) 

The indices for mode polarization have been removed since 
only one decay path has been considered (i.e., kL0—»k(^ 
+ k',^). Contributions by other processes can be formulated 
easily from Eq. (2). 

In the interaction Hamiltonian derived above, all the 
terms other than P(k;k';k") are known; however, it is quite 
difficult to properly measure the anharmonic potential term. 
To circumvent this problem, Keating' has used the theory of 
elasticity since there exists a relationship between the third- 
order elasticity coefficients and the anharmonic term in the 
crystal potential. Elasticity coefficients also are related 
closely to the Grünesien parameter. By using the Taylor- 
series expansion in terms of strain variables, Brugger1- has 
represented the macroscopic elastic strain energy as 

t/ = ^2   C/,,J7.7+2   CjKTIjVK+tL  Cjjjtß 
J<K 

+ ;S    CJJKT/2jTJK+     2       CjKLTJjJ]KTJL, (4) 
J<K<L J*K 

where U is the internal energy per unit undeformed volume, 
and CJK and CJKI are the second- and third-order elasticity 
coefficients. The strain variable rjj as defined in Refs. 13 and 
15 contains displacement gradient terms such as 

where X is the position in the undeformed solid. After proper 
substitutions for TJJ . the strain energy density Ua associated 
with the third-order contributions in cubic crystals reduces 
to' 

+ e2
3(el + e2)], (6) 

where ej represents the linear part of rjj . A careful compari- 
son of Keating's formulation13 with that of Refs. 10 and 11 
reveals that Ua corresponds to P as defined in Eq. (1); ac- 
cordingly, a valid expression for the decay Hamiltonian can 
be developed once Ua is evaluated. In general, the values for 
the second- and third-order elastic constants can be obtained 
from the literature. At the same time, the magnitude of the 
strain variable e} may be estimated based on numerical mod- 
els for lattice dynamics such as that of Kunc and Nielson.14 

Following Fermi's golden rule approximation, the LO 
phonon decay rate can be calculated readily. By defining the 
matrix element as 

3rr2 

|A/|2 = 8Nm3 1 ^k^k'^k" 
}nk{nk'+l)(nk»+ 1)8^ + k», 

(7) 

the transition rate can be written as 

277   ^, 
r = -r- 2J   \M\~8(hwk— ha>k> — hu)k»), 

h   k'.k" 
(8) 

where /ik=[exp(fiwk/*fl7')-l]~1 is the normal Bose- 
Einstein occupation number. Then, following the analyses in 
Refs. 8 and 9, the lifetime for the LO phonon with wave 
vector k may be defined as 

f =2 
1 

(1 + iik> + nk») 

X 8k-k'+k»8(h(Ok— Awk< — htoif). (9) 

When more than one path exists for decay (i.e., paths other 
than LO—»LA+LA), each contribution is added to obtain the 
LO-phonon lifetime. In this case, the sum in Eq. (9) is over 
both the phonon wave vector and mode polarization. 

Using this formalism we have calculated the lifetime of 
bulk LO phonons in GaAs. In this calculations, the values for 
e, have been estimated based on the valence shell model 
developed by Kunc and Nielson for lattice dynamics.14 Since 
ej depends only on the initial phonon wave vector k, Ua for 
cubic coupling can be taken out of the sum in Eq. (9). For 
simplicity, a linear dispersion relation is assumed for acous- 
tic phonons. At the same time, the occupation numbers for 
the k' and k" states are obtained by assuming that the ener- 
gies for these two phonon modes are approximately hto^l. 
This is justifiable since only the near-zone-center LO 
phonons are of interest. Although elastic constants for GaAs 
are available in the literature, some of the measured third- 
order constants (Cl23 and Cm, in particular) show wide 
variations as can be seen in Ref. 16. To circumvent this un- 
certainty, we have used a relationship between the third- 
order elastic constants and the microscopic force constants 
developed by Keating.13 

By varying microscopic force constant parameters, an 
optimum set of third-order elastic constants can be chosen 
systematically. The values adopted in this study are listed 

3906       J. Appl. Phys., Vol. 76, No. 6, 15 September 1994 Bhatt. Kim, and Stroscio 



TABLE I. Third-order elastic consiants for GaAs in units of GPa. 

c,„ C'n: C,v t-'uj <-,» c*. 
-663 -391 -11 -41 -311 -41 

in Table I. These values are well within the range of experi- 
mental variations. Although the relation given in Ref. 13 has 
been derived for crystals with diamond lattice structures, 
modifications for zinc-blende structures introduce only mi- 
nor changes17 and. thus, are not considered. 

Figure 1 shows the LO-phonon lifetime as a function of 
temperature. Since the decay into two LA phonons is the 
dominant process, we have considered this mechanism only. 
The other processes are either not possible (when energy and 
momentum cannot be conserved) or provide a small contri- 
bution to the overall lifetime. As can be seen, the lifetime 
decreases with increasing temperature mainly due to the 
Bose-Einstein occupation number. The results obtained from 
our analysis agree well with the widely accepted experimen- 
tal data (3.5 ps at 300 K and 7 ps at 77 K; IK-20 The agree- 
ment is better at room temperature than at low temperatures. 
This is reasonable since the third-order elastic constants used 
in our study are estimated at 300 K. Although elastic con- 
stants depend on temperature, their values are not provided 
over a wide range of temperature. Thus, it is likely that, if 
temperature-dependent elastic constants become available. 
the accuracy of calculation can be enhanced particularly at 
low temperatures. At the same time, inclusion of other decay 
mechanisms (i.e.. other than an LO phonon decaying into 
two LA phonons) reduces the lifetime by approximately 0.5 
ps and, thus, further improves the agreement. We have also 
studied the LO-phonon lifetime as a function of phonon 
wave vector, and the results are plotted along the (100) and 
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FIG. 1. Temperature dependence of LO-phonon lifetime in bulk GaAs. It 
has been assumed that elastic constants remain constant with temperature. 
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FIG. 2. LO-phonon lifetime as a function of wave vector in bulk GaAs 
along the <100> and (111) directions at 77 and 300 K. 

(Ill) directions in Fig. 2. It is found that the phonon lifetime 
does not depend strongly on the phonon wave vector. As a 
result, the £=0 value provides a good approximation for the 
LO-phonon lifetime in bulk materials. 
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We study theoretically vibrational properties of microtubules (MTs), which are long hollow 
cylindrical macromolecules with a diam. of the order of 25 nm and serve as a major component 
of cytoskeleton in eukariotic cells. Modeling MTs by thin elastic cylindrical shells, we derive the 
eigenfrequencies and eigenmodes of confined elastic vibrations in a shell-fluid system. Numerical 
calculations, based on recently obtained experimental data for Young's modulus of MT, show that 
MT-water system supports interface elastic waves with maximal frequencies in a gigahertz range. 
In a long-wavelength limit, there exist three axisymmetric acoustic waves with velocities of about 
200 to 600 m/s, and an infinite set of helical waves with a parabolic dispersion law. 

PACS number(s): 87.15.-v 

I. INTRODUCTION 

The increasing demand for miniaturization and en- 
hancement of the operation speed has culminated in 
tremendous progress in nanostructure fabrication and the 
advent of the principally new microelectronic devices. 
Recently, much attention has been devoted to the prob- 
lem of confined optical [1] and acoustic [2-5] vibrations in 
semiconductor heterostructures. Dispersion relations for 
acoustic waves and the effect of the phonon confinement 
on electron transport has been analyzed in such artifi- 
cially grown objects as thin metal films [2], free-standing 
slabs [3] and whiskers [4], as well as buried cylindrical 
wires [5]. It has been suggested that such structures with 
confined lattice vibrations can provide an acoustic fiber 
for future acoustoelectronic devices [5]. 

On the other hand, the existence of the physical limita- 
tions for the miniaturization due to the atomic structure 
of matter brought about a new scientific direction, molec- 
ular electronics [6]. In contrast to the semiconductor 
technology that relies on artificially designed structures, 
molecular electronics explores the physical properties of 
existing organic macromolecules and their possible appli- 
cations to information processing. In particular, elastic 
properties of biological membranes [7] and flagella [8] in 
an aqueous environment have been studied extensively. 

From the point of view of nanophysics and molecular 
electronics, one of the most interesting biological objects 
is a cytoskeleton filamentous network existing in every 
eukariotic cell [9,10]. The various filaments have been 
classified according to their diameter and include micro- 
filaments (5-7 nm), intermediate filaments (8-11 nm), 
and microtubules (24-28 nm). Though the cytoskele- 
ton has an impact on some purely biological processes 
[11] (control of gene expression, protein synthesis, and 
cell cycle regulation), its main functions are based on the 

mechanical properties such as rigidity and elasticity. The 
cytoskeleton is responsible for supporting the cell shape 
and serves as a global framework for the mechanical and 
functional integration of the whole cell [12]. Recently, in 
a series of ingenious experiments, based on the change of 
filament shape due to thermal (Brownian) fluctuations, 
the flexural rigidity and Young's elastic modulus have 
been measured for the intermediate filaments [15] and 
microtubules [16-19]. 

Among three major filamentous components of the cy- 
toskeleton, microtubules (MTs) have received the most 
attention and are subject to intensive research [9,20-22]. 
MTs are hollow cylinders [13] of approximately 25 nm 
outer diameter, 15 nm inner diameter, and indefinite 
length (see Fig. 1). The wall of a MT cylinder is made 

FIG. 1. Schematic drawing of a microtubule formed with 
protofilaments of tubulin dimers (from Ref. [14]). 
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up of (usually 13) linear elements termed protofilaments, 
which are formed of protein subunits known as tubu- 
lin dimers. Each 8-nm-long dimer consists of a and ß 
tubulin monomers with a molecular weight of 55 kDa. 
Results of electron microscopy and x-ray fiber diffraction 
measurements demonstrate that tubulin dimers form a 
120-Ä pitch left-handed three-start helix set [23]. The 
thin-walled tubular shape of MT provides the maximal 
rigidity of the structure for given cross-sectional area and 
elastic constants of the constituent material [18]. 

The main directions of biophysical research on MTs 
include the study of their elastic properties [16-19] and 
the dynamical instability of assembling and disassem- 
bling [24,25]. The possibility of kinklike excitations in 
MTs has been investigated theoretically [26] and the ex- 
perimental observation of MT disassembly due to a low- 
intensity ultrasound has been reported [27]. Incidentally, 
considerable attention in semiconductor physics has been 
focused on the study of electronic and vibrational proper- 
ties of recently fabricated artificial counterparts of MT— 
graphene nanotubules [28]. 

In this paper, we study theoretically the confined 
acoustic vibrations of MT in a fluid using the formal- 
ism of the elasticity theory. The MT is modeled by a 
thin-walled hollow elastic cylinder immersed in liquid. 
This approach is similar to that used for the description 
of underwater acoustic scattering by thin metallic shells 
[29]. In Sec. II, we obtain the equations of motion for vi- 
brations in a shell-fluid system and derive the dispersion 
relations for the elastic waves that are analyzed in Sec. 
III. The results of numerical calculations and discussion 
are provided in Sec. IV. 

II. EQUATIONS OF MOTION 

We model a microtubule with an infinitely long cylin- 
drical shell of radius R and wall thickness h. In cylindri- 
cal coordinates (r, (p,z), the shell is chosen to be located 
in the region R - h/2 <r < R + h/2; both the inner and 
outer parts of the shell are filled with a fluid. The equa- 
tion of motion for the displacement vector u of the shell 
is given by the second Newton's law, which in cylindrical 
coordinates has the form [30] 

<7rr,r + "rr,z + {<*T<e,V + <7Pr ~ Giptp) /»" = pÜr , 

"rv,r + <7<pz,z + (°W, v> + 2&rV) /T = pÜv , (1) 

OVz,r + azz,z + (<7<pz,<p + <Trz) A = püz , 

where p is a volume density of the shell. The left-hand 
sides of these equations are equal to elastic forces per 
unit volume and are written in terms of the stress ten- 
sor a. The subscripts after the commas denote partial 
derivatives over corresponding variables. Equation (1) is 
subject to conditions Pj = 0"t,nj at the inner and outer 
surfaces of the shell, where P is a surface force per unit 
area and n is a unit vector normal to the boundary. Since 
shear forces are absent in fluids, the boundary conditions 
take the form 

rTlr=Ä+h/2 — Po i        arr\r=R_h/2 — Pi (3) 

where p0 and pi are the pressures of fluid at the outer 
and inner boundaries of the shell. 

In order to obtain the equations of motion for a thin 
shell (h «; R), Eq. (1) is integrated over r from R - h/2 
to R + h/2. Assuming that all quantities (except <rrP) 
are practically constant with respect to r, and taking 
into account the boundary conditions given in Eqs. (2) 
and (3), we find in the lowest order in small parameter 
h/R: 

-avv/R + (p0 - pi)/h = pur , 

/R + <TpZ,z = pil, 

<7tpz,<p/R + <rzz,z = PV-z 

Wi *P ■if 1 (4) 

The stress tensor a can be expressed in terms of strain 
tensor e with the help of the Hooke's law. In the assump- 
tion of isotropic material of the shell, it is given as 

E 

l+i/ -^—Sij^u+^ (5) 

where E and v are Young's modulus and Poisson's ratio 
of the material. We substitute Eq. (5) into Eq. (4), elim- 
inate the component eTT with the help of Eq. (2), and 
express the remaining components of strain tensor evv, 
e^z, and tzz in terms of derivatives of the displacement 
vector u [30]. Then, the equations of motion in the lowest 
order in h/R may be written as 

R2 
VUZ,Z        Vi-Po Ur 

R phs2 

1*T,ip + Utfi,lplf>     .....                 ,     V+UZ,(fiZ 

R2           ' "-"""  '        R "   5*   ' 

"«r.z+l'+V*«    ,    V-Uz,VV    , 
R             '      R?     +Uz'" 

«X 

~   S2   ' 

(6) 

Here i/± = (1 ± i/)/2, and s = ^jE/p{l - v2) is the lon- 
gitudinal "thin plate" sound speed of the shell. 

To obtain the equation of motion of the fluid-shell sys- 
tem in a closed form, the pressure terms pj,0 need to be 
related to the shell displacement vector u. The displace- 
ment vector u/ of the fluid can be expressed in terms of 
the scalar potential $ through the relationship 

u/ = grad $; 

$ satisfies the wave equation [32] 

$ - si A$ = 0 , 

(7) 

(8) 

<Tr,p\r=R^h/2 ~  °T \r=R^h/2 = o, (2) 

where Sf is a speed of sound in a fluid. Then, using the 
relation between the scalar potential and pressure 

P = -P/*. 

where pf is a fluid density, the equation for the radial 
displacement u,. of the shell [given in Eq. (6)] can be 
rewritten as 



*-,X~4 i.*J A A v Ui^iWJiOiJw^i^ I  k.    A    *_ »-» *.*-* 

fl2 

1/U 

fi 
1,1    .        ™i       ™o + a- — 

S2Ä .2 (9) 

where a = p/R/ph is a dimensionless constant that char- 
acterizes the shell-fluid coupling. 

We seek the solution of the equations of motion [i.e., 
Eqs. (6) and (9)] as a superposition of harmonic waves 
with longitudinal wave vector kt and azimuthal number 
m, 

"«, -*Cp" 

uv ^ c„ 
c, 

exp (imtp + iktz — iwt) (10) 

and choose the solutions of Eq. (8) for scalar potentials of 
fluid corresponding to the evanescent interface vibrations 
localized in the vicinity of the shell: 

d Im(Kr/R) 
c0Km(Kr/R) exp (imtp + ikxz — iut) 

(11) 

Here the inverse confinement length K (normalized by the 
radius R) is given by 

K2 = R3(kl - u2/s 
»■*-(*)' 

n2 
(12) 

where fi = wR/s and k = kxR are the dimensionless 
frequency and wave vector, respectively. Interface vibra- 
tions of fluid, localized near the shell surface, correspond 
to region K2 > 0; in the opposite case of w > Sfkx the 
acoustic energy is radiated from the shell. The require- 
ment of the continuity of the fluid and shell displacements 
at r = R leads, after use of Eq. (7), to the following re- 
lation between Cji0 and <v: 

= -iCrR I/O) (13) 

Finally, substituting Eqs. (10)-(13) into (6) and (9), 
we obtain the eigenequation for the interface acoustic vi- 
bration in the a shell-fluid system: 

V [c, cv, cz]T = 0 , 

where the dynamical matrix V is given by 

(14) 

V = 
n2(l + WmK) -1 m i/fc 

m ft2 — m2 — v-k2 —v+mk 
vk —u+mk n2 — f_m2 — k2 

(15) 

and the coupling term between the shell and fluid is equal 
to 

r/m(«)  .    Km(n) 
W     =- 

K Im(K) T -Km(*) 
(16) 

III. ANALYSIS OF DISPERSION RELATION 

From Eq. (14) we find the dispersion relation for con- 
fined waves in a shell-fluid system in a form 

detZ> = 0 (17) 

As follows from Eqs. (15) and (16), V is a real symmetric 
3x3 matrix depending on azimuthal number m. There- 
fore, for each given m the dispersion relation [Eq. (17)] 
specifies three positive vibrational modes Slm' , which are 
identified by j =1, II, and III in decreasing order: 

*£.(*) > «£(*) > «™ (*) • («) 
The only exclusion from inequality in Eq. (18) occurs for 
m = 0, where the pure torsional mode, 

nft*) = juzk, (19) 

is decoupled from other modes over the entire range of 
fc, and can cross the mode with j =111; a graphical illus- 
tration is given in the next section. 

A. Free cylindrical shell 

Let us first analyze the vibration of a free cylindrical 
shell [31] by taking the coupling constant a equal to zero. 
In this case, the dispersion relation defined by Eqs. (15)- 
(17) is reduced to a bicubic equation with respect to the 
dimensionless frequency fi = uiR/s. It is more conve- 
nient, however, to calculate the inverse relation Ajm(fi) 
as a solution of bi-quadratic equation in wave vector k. 
Since the explicit form of the dispersion relation can be 
readily obtained from Eqs. (15) and (17), we present only 
the asymptotic values of fi&^A). For a large wavelength 
(Jfc = kzR < 1), we have 

nl
m(k) ~ v/m2 + 1,   ä&(k)2iy/ÜZ{m + k), 

(20) 

n»L0(fc) Ä VT^fc, nSUw^y^^S 

In the axisymmetric case (m = 0) and a long-wavelength 
limit, the modes I, II, and III correspond to pure ra- 
dial, torsional, and longitudinal motion; for m ^ 0 the 
radial and torsional motions are coupled. In the short- 
wavelength limit (Jk » m + 1), we obtain asymptotic ex- 
pressions that are not dependent on the azimuthal num- 
ber m: 
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iil(k)^k, oU(*)^*. nL"W - vi^2. (2i) 
Analysis of coefficients c,., cv, and cz in Eq. (14) shows 
that in the limit of large k the modes Ql

m(k), fi" (fc), 
and Q™(k) correspond to pure longitudinal, torsional, 
and radial vibrations. Note that for any m the minimal 
value of n{„ is greater then the maximal value of Qm

l. 
Therefore, for given frequency £1 there exist no more than 
two positive wave vectors km , which is consistent with 
the availability of the biquadratic dispersion relation with 
respect to k. 

B. Fluid-shell system 

Let us return now to the analysis of Eq. (17) for vibra- 
tions in a coupled shell-fluid system (a ^ 0). Existence 
of a fluid in the outer part of the shell can lead to a qual- 
itative change in the dispersion relation. Now the (w, kz) 
plane is divided to two sectors by the line w = Sfkz. The 
region w < Sfkz (or K

2
 > 0) corresponds to the interface 

vibrations, localized at distance R/K from the shell ac- 
cording to Eq. (11). The opposite case of w > Sfkz (or 
K2 < 0) can be described by Eq. (11), after the substitu- 
tion of [33] 

im(-i\K\) = rmjm(\K\), 

Km(-i\K\) = ^im+1Hm-H\K\), 

as the radiation of an acoustic wave to the outer space 
since the Hankel function of the first kind, Hm , corre- 
sponds to an outgoing cylindrical wave. In this situation, 
the eigenfrequencies fi(fc) will be complex with negative 
imaginary parts and, according to Eqs. (10) and (11), 
the amplitudes of vibrations will decay exponentially in 
time due to an energy loss by the system. From the dis- 
cussion above, it follows that the behavior of acoustic 
modes depends drastically on the relation between the 
sound speeds in a fluid and the shell, Sf and 5. Since 
sound speed in water is approximately 2.5 times larger 
than that in the MT (as discussed in the next section), 
Sf > s is assumed throughout the rest of this paper. 

To describe the spectrum of vibrations in the shell- 
fluid system, we derive the asymptotical expressions for 
the coupling term WmK in two limiting cases of phase 
velocities (i) close to Sf (small «) and (ii) much smaller 
than Sf (large K). Using the expression for the Wron- 
skian of the modified Bessel equation [33], Im(K)K'm(K) — 
Km(K)I'm(K) = 1/K, and asymptotics of functions Im and 
Km, we find from Eq. (16) 

W     ~ 
2a /K2

, 

2a/m, 
2O/K, 

for K <£ 1 and m = 0 
for K <S 1 and m / 0 
for K » m -I-1 and any m. 

(.22) 

Since at large K the coupling term WmK ~ 2a//c tends 
to zero, we deduce that in a short-wavelength limit (k 3> 
m + 1), the vibration spectrum of the shell-fluid system 
tends to that of a free shell [Eq. (21)], and classification 

of modes I, II, III as pure longitudinal, torsional, and 
radial, is unchanged. The physical explanation for this 
result is that in the limit of large K, only a fluid in the 
nearest vicinity, within R/K from the shell, participates 
in vibration; therefore, the motion of the shell is essen- 
tially free. 

In the long-wavelength limit, there exist two distinct 
cases: m = 0 and m ^ 0. For axisymmetric vibrations 
(m=0), the mode II with dispersion given by Eq. (19) 
corresponds to a pure torsional vibrations of the shell 
only, and is decoupled from the rest of the modes in the 
whole range of k. The frequencies of axisymmetric modes 
I and III should be found from the remaining 2 x 2 de- 
terminant involving the coupling term W0K. Since this 
term diverges at small K [Eq. (22)], the frequencies Qo(k) 
and nJn(A:) at small k should approach zero maintain- 
ing phase velocities less than Sf to avoid crossing the 
u = Sfkz line. Analysis shows that in the limiting case 
of small k the frequencies flö(fc) and fi"1^) are propor- 
tional to the wave vector: 

■»1,111 
!#"(*) * y/^k (23) 

Substituting the expansion given in Eq. (23) into the dis- 
persion equation, and collecting the terms of the lowest 
(second) order in k, the coefficients ci,3 are found as so- 
lutions of the following quadratic equation: 

(a2 + 2as))c2 - [s2{\ - u2) + s2
f(l + 2a)]e 

+4(l-i/2) = 0.  (24) 

It can be shown that Eq. (24) always has two real positive 
roots, provided that Sf > s. In case of 2a 3> (s/sf)2 and 
v2 < 1 the solutions of Eq. (24) are given by Cx « 1 
and c3 « l/2a. For a coupled system (in contrast to a 
free shell), both modes I and III are of the mixed radial- 
longitudinal type even at m = 0 and small k. Note also 
that in the absence of fluid the frequency of the mode I 
would have a finite value at k = 0: in the case of a = 0 
we have Sl\{Q) = 1 in accordance with Eq. (20). 

In the case of vibrations without rotational symmetry 
(m ^ 0), the coupling term WmK reaches a finite value 
Wm0 = 2a/m at K = 0 [see Eq. (22)], and modes I and 
II touch the line w = Sfkz at finite frequencies, while the 
localization length R/K will tend to infinity. However, 
in the case of Re (w) > Sfkz the frequency w will have 
a negative imaginary part, and the amplitudes of vibra- 
tions will decay as a result of the radiation of acoustic 
energy out of the shell. The frequency of the mode III 
will preserve its parabolic dependence on the wave vector 
in the limit of small k [Eq. (20)], though with a renor- 
malized coefficient: 

JCOW 
-/ 

l-l/2 "jfe2 

m2 + 2am + lm 
(25) 

Thus, in the long-wavelength limit (kz «: 1/JR), the 
shell-fluid system supports three axisymmetric interface 
modes with a linear dispersion law, Q,jj'(k) a k, corre- 
sponding to conventional acoustic waves with linear dis- 
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persion. In addition, there exists an infinite set of inter- 
face modes with a parabolic dispersion law, fij^fc) a k2 

and m = 1,2,..., as given by Eq. (25). Since the lines of 
constant phases for such waves, 

imp + kzz — Lut = const , 

have the form of helices according to Eqs. (10) and (11), 
this set of modes can be termed as helical waves. In 
contrast to acoustic waves with constant phase and group 
velocities, those for helical waves tend to zero at small 
wave vectors kz. 

IV. NUMERICAL RESULTS AND DISCUSSION 

In order to find the vibrational spectrum of the shell- 
fluid system in the whole range of fc, we have to solve 
the transcendental dispersion relation given by Eqs. (15)- 
(17) numerically. Among the parameters required for the 
numerical evaluation, the most difficult to obtain are the 
elastic constants, E and u, for MT, since no direct mea- 
surement seems to be possible. However, the results de- 
pend only weakly on the Poisson's ratio v, and reliable 
values for the Young's modulus E has been measured 
[16-19] using the elegant method based on thermal fluc- 
tuations of shape of MT. 

The main physical idea for the measurement of a flex- 
ible rigidity (FR) of long macromolecules is that they 
are subject to the Brownian motion due to interaction 
with the surrounding molecules of water [34,35]. Since 
the macromolecules are relatively heavy, the fluctuation 
of their center of mass is negligible, but their shape can 
be changed notably, depending directly on the FR for 
the molecule. The latter is equal to El, i.e., the product 
of Young's modulus E and the geometrical moment of 
inertia / of a molecule's cross section. 

The first determination of the MT rigidity, per- 
formed by Yamazaki, Maeda, and Miki-Noumura [16] and 
Mizushima-Sugano, a Maeda, and Miki-Noumura [17], 
were based on measurement of the thermal fluctuations 
of the end-to-end distance of MT; knowledge of these 
fluctuations and the total length of MT allows the deter- 
mination of the FR [35]. However, such measurements 
lack a test of internal consistency, which is desirable be- 
cause of the difficulty in distinguishing fluctuations from 
measurement noise and nonthermal bending [18]. It is 
believed now that the values obtained in Refs. [16,17] 
are almost 2 orders of magnitude smaller than the actual 
ones because of measurement errors and intrinsic bend of 
MT [18]. 

The first reliable data on the rigidity of MT have been 
obtained by Gittes et al. [18] using dark-field and fluo- 
rescence video-enhanced microscopy to monitor the ther- 
mal fluctuations in shape of taxol-stabilized MT free in 
solution. In order to overcome the problems due to the 
measurement noise, the FR was deduced from the Fourier 
decomposition of the MT shape. Results of analysis of up 
to the three lowest Fourier modes of the shape of MT of 
different length were consistent with each other and gave 
the value of FR corresponding to the isotropic Young's 

modulus E ~ 1.2 GPa. Gittes et al. [18] have also mea- 
sured the FR of actin filaments and obtained the value 
of the Young's modulus E = 2.6 GPa in good agreement 
with the earlier results [15]. More recently, Venier et al. 
[19] applied two independent methods to measure the FR 
of MT attached by one end to axonemal pieces fixed on 
the glass. In this study, the FR was obtained by ana- 
lyzing the bending shape of MT in a hydrodynamic flow 
and the thermal fluctuations of the free end of MT. Both 
methods gave similar results for FR corresponding to an 
isotropic Young's modulus E = 0.5 ± 0.1 GPa. The fac- 
tor of 2 discrepancy with the results of Gittes et al. were 
interpreted as due to the stiffening action of taxol used 
in Ref. [18] to stabilize the MT. 

In our numerical calculations, the most recent value 
of Young's modulus, E = 0.5 ± 0.1 GPa from Ref. [19], 
is used. Another parameter needed in the calculation is 
Poisson's ratio v. In general, the value for this parameter 
(of known materials) lies in the range 0 < v < 1/2, with 
typical values of v = 0.2-0.3. Since our results depend 
only weakly on v, we choose, for the sake of definiteness, 
the value u = 0.3. 

Approximation of a microtubule by a hollow cylinder 
with ideal surfaces used in Refs. [18,19] to calculate the 
geometric moment of inertia, required the use of "con- 
tact" inner radius fij of 11.5 nm (measured in Ref. [23]) 
and wall thickness h of 2.7 nm for 14-protofilament MT. 
Thus, the outer radius R0 of MT in our calculation is 
14.2 nm and the mean radius R = {Ri +R0)/2 is approx- 
imately 12.8 nm. At the same time, by taking the mass 
of a tubulin dimer to be M = 110 kDa = 1.83 x 10-19 g, 
and the length I = 8 nm, we find the density p - 
UM/n{R2

0 - R
2)l » 1.47 g/cm3 and the "thin-plate" 

sound speed s = y/E/p{l - v2) « 610 m/s. Using the 
density of water (p/ = 1 g/cm3) and speed of sound in 
water (sf = 1.50 km/s), the value of the dimensionless 
coupling constant a = pfR/ph is found to be approxi- 
mately 3.22. 

We note that the calculated sound speed in MT is 2.5 
times lower than in water, in contrast to that in mate- 
rials with cellulose-based cell walls (e.g., wood), where 
the propagation speed is substantially higher. The rea- 
son for such a difference lies in the large Young's mod- 
ulus of cellulose, E ~ 100 GPa [36], and is because of 
the nature of chemical binding in this polymer. In fact, 
glucose monomers are linked to cellulose by strong ß 1,4- 
glicosyde (covalent) bonds, while tubulin subunits assem- 
ble into MT due to much weaker hydrophobic interaction. 

The results of numerical calculations of dispersion 
fi^fc) for azimuthal numbers m =1, 2, and 3 are pre- 
sented in Figs. 2-4. Thick solid lines correspond to vi- 
brations of MT interacting with water both outside and 
inside of MT. The eigenfrequencies of free MT are pre- 
sented for comparison and are marked by thick dashed 
lines. The thin line is specified by w = 8fkz and it sepa- 
rates the region of interface vibrations in the MT-water 
system from that of radiative waves. Note that the di- 
mensionless frequency fi = 1 corresponds to a cyclic fre- 
quency of /o « 7.6 GHz. 

As can be seen from Figs. 2-4, the frequencies of vi- 
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1 2 
Wave vector 

1 2 
Wave vector 

FIG. 2. Dimensionless frequency Q = uiR/s vs dimension- 
less wave vector k = Äfct for axisymmetric (m = 0) vibrations 
of MT. n = 1 corresponds to a cyclic frequency 7.6 GHz. Solid 
and dashed lines correspond to vibrations in a MT with and 
without water, respectively. Thin dotted line at u — Sfkz 

separates regions of interface and radiative waves. 

brations for MT-water system tend to those of a free MT 
at large wave vectors (fcz » m/R) and do not depend on 
the azimuthal number m. In a short-wavelength limit, 
the modes I and II have a linear dispersion with veloci- 
ties s « 610 m/s and 8y/(l-i/)/2 « 360 m/s, while the 
cyclic frequencies of the type-Ill modes tend to a con- 

1 2 
Wave vector 

FIG. 3. Dispersion relations for vibration of MT with az- 
imuthal number m = 1. Other notations coincide with those 
in Fig. 2. 

FIG. 4. Dispersion relations for vibration of MT with az- 
imuthal number m — 2. Other notations coincide with those 
in Fig. 2. 

stant value of 7.2 GHz [see Eq. (20)]. In the limit of large 
fc, modes I, II, and III correspond to pure longitudinal, 
torsional, and radial vibrations. Note that because of 
our assumption of homogeneous MT walls, the results at 
fc > 1 are only of qualitative character (the length of the 
tubulin dimer, 8 nm, is comparable to the radius of MT, 
13 nm). Moreover, since our derivation was based on the 
assumption of thin MT walls (h «C R), the results are 
even qualitatively wrong for fc > R/h « 5. The assump- 
tions made do not modify the long-wavelength (fc <; 1) 
part of the spectrum, which is of prime importance for 
the study of conformational changes in proteins [37,38]. 

The behavior of the eigenfrequencies at intermediate 
and small values of wave vector fc depends essentially on 
whether the azimuthal number m is equal to zero. 

For axisymmetric vibrations (m = 0), the mode 
nj'(fc) = ^/(l - i/)/2fc with the velocity 360 m/s (see 
Fig. 2) involves the pure torsional vibrations of the shell 
only and is decoupled from other modes [cf. Eq. (19)]. 
The other two modes in Fig. 2 (I and III) cannot touch 
the line u = s/fcz, because the shell-fluid coupling term 
Wo« [given by Eq. (22)] diverges when phase velocity of 
a wave approaches sound speed in a fluid «/. At large 
wavelength, the radial-longitudinal modes I and III de- 
pend linearly on fc and are characterized by speeds of 
propagation 614 and 225 m/s according to Eqs. (23) and 
(24). The linear dependence of Q0, fij1, and ft0" on fc 
in the long-wavelength limit allows us to identify them 
with conventional acoustic modes, in contrast to other 
elastic modes that also could be called acoustical. For 
vibrations without rotational symmetry, two modes (flj„ 
and fi") for each given m/0 cross the line w = 8fkz 

and become radiative modes at small fc. Continuation of 
their dispersion curves is not shown at fcx < Re (w/s/) 
in Figs. 3 and 4, since in this region the eigenfrequencies 
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are complex.   The helical mode III remains real at all 
wavelengths, and ß"1 oc k2 in agreement with Eq. (25). 

V. CONCLUSION 

We have investigated the existence of interface elastic 
vibrations of MT immersed in water. It is found that 
this system supports nonradiative elastic waves localized 
in the vicinity of the MT wall with maximal frequen- 
cies of order of tens of gigahertz. In the long-wavelength 
limit, there exist three axisymmetric acoustic waves with 
propagation speed of approximately 200-600 m/s and an 
infinite set of helical waves with a parabolic dispersion 
law. 

Our results draw attention to a parallel existing be- 

tween recent studies of acoustic phonon quantization in 
artificially grown semiconductor nanostructures [2-5,28] 
and vibrations of their biological counterparts, micro- 
tubules. On other hand we hope that our analysis of 
large-scale collective motions of MT based on elasticity 
formalism complements molucular dynamics simulations 
of vibrational spectra of globular proteins [37-39]. 
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Within the framework of the dielectric continuum model, the interface phonon frequencies for spheri- 
cal GaAs/AljGai-j As quantum dots are obtained as functions of the alloy composition in the range 
x =0.2-1.0. By imposing electrostatic boundary conditions, the two interface phonon frequencies are 
calculated for the first three modes. The frequency behavior of the different modes is found to be simi- 
lar. However, for each mode one of the phonon frequencies is found to be strongly dependent on x. It is 
demonstrated that these phonon modes play an important role in determining resonant optical absorp- 
tion of quantum dots. 

I. INTRODUCTION 

During the past few years there has been great interest 
in investigating microcrystals as small as a few nanome- 
ters, usually called quantum dots, because they exhibit 
optical properties very different from bulk crystals. Their 
distinct optical properties are largely a consequence of 
the three-dimensional confinement of electrons and 
holes1-5 as well as phonons.6-11 The interaction be- 
tween the confined electrons (holes) and phonons is an 
important factor that determines the optical proper- 
ties.4,5'12 In fact, the photoluminescence degradation in 
small quantum dots has been ascribed recently to the de- 
creasing relaxation rate of the carriers with decreasing 
dot size, a phenomenon referred to as the phonon 
bottleneck effect.13'14 Thus, any realistic discussion of the 
light emission efficiency of low-dimensional semiconduc- 
tor heterostructures should entail a discussion of the re- 
laxation process via phonon emission. 

The role of confined longitudinal-optical (LO) and in- 
terface (IF) phonon modes in the electron relaxation pro- 
cess, and consequently in the photoluminescence, has 
been investigated previously for cubical GaAs quantum 
dots which are free standing in vacuum.I5'16 On the oth- 
er hand, the IF phonon modes are found to be especially 
important in optical absorption of semiconductor quan- 
tum dots fabricated by etching and grating techniques be- 
cause these modes are very sensitive to the shape and size 
of the dots.12'17-19 In optical experiments on inhomo- 
geneous systems the frequency shifts from the bulk values 
are used to characterize the shapes and sizes as well as 
the constitutive materials of the dots. A general theoreti- 
cal treatment for the IF frequencies and the correspond- 
ing optical properties as functions of the dot size and 
shape has been developed previously.12 However, to our 
knowledge, the effect of the materials which constitute 
the dot and barrier on the optical properties has not been 
discussed. 

The aim of this work is to investigate the effects of 
different barrier x values on interface phonon modes and 
associated resonant optical-absorption properties of 
spherical GaAs/AlxGa,_xAs quantum dots. For this, 
we estimate the IF phonon frequency shifts as a function 
of the Al mole fraction x in the material which surrounds 
the dot. The framework of these investigations is the 
dielectric continuum model neglecting retardation effects. 
This model has been applied extensively in the study of 
electron-phonon interactions of low-dimensional polar 
semiconductor heterostructures such as quantum wells, 
quantum wires, and quantum dots.12,13,16,20-22 In the 
case of both LO and IF phonons, good agreement has 
been found between results obtained with the dielectric 
continuum model and those obtained with detailed 
lattice-dynamical calculations23,24 and with more ela- 
borate continuum approaches.25 The dielectric continu- 
um model has the advantage of giving relatively simple 
analytical results which are particularly useful for study- 
ing the interactions of electrons or light with the IF and 
LO modes. The region of validity of the continuum ap- 
proach is limited to phonon wavelengths which are large 
compared with the lattice constant. The formalism of 
this model is described elsewhere. 12,2° 

II. RESULTS AND DISCUSSION 

The semiconductor heterostructures under investiga- 
tion are spherical GaAs/AlxGa,_xAs quantum dots with 
GaAs as the dot material and Al^Ga^^As as the barrier 
material. The subscript x is the Al mole fraction; values 
of x in the range 0.2-1.0 are considered. Each barrier 
material is characterized by a dielectric function £2(0) 
taken from Ref. 26. The Lyddane-Sach-Teller relation is 
assumed for the frequency dependences of e^a) and 
E2(a). In polar semiconductors, such as GaAs and 
AlxGa!_xAs, both confined LO and IF modes polarize 
the semiconductor generating an electric field and an as- 
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sociated electrostatic potential <I>(r). The confined LO 
and IF phonon modes for a cubical GaAs quantum dot 
which is free standing in vacuum have been given previ- 
ously.15,16 

Assuming there is no free charge in either dot or bar- 
rier materials (GaAs and Al^Ga^^As), the divergence of 
the displacement field D vanishes everywhere. Due to 
the relation between D and the electric field E, 
D=e(t<;)E, the above condition gives e,(<a)V>E=0 in 
each material. As the electric field derives from the sca- 
lar potential <t>(r), the last equation can be written as 

e,(*>)V2<J>(r)=0,   i=l,2 . (1) 

For interface modes, e,(<y)#0; therefore, Eq. (1) is 
satisfied if V2<I>(r)=0. We resolve the Laplace's equation 
with the standard electrostatic boundary conditions im- 
posed at the interface between the two media, which are 
the continuity of tangential components of E and normal 
component of D. 

If the radius of the spherical GaAs/AlxGa,_xAs quan- 
tum dot is R, the solution of Laplace's equation for the 
electrostatic potential in spherical coordinates (r,0,#) 
can be expressed as 

4>(r,0,^) = e,m*i,;
m(cosö)X 

(r/R)',   r<R 

(R/r)l + \   r>R, 
(2) 

where the integers /( >0) and m (\m\<l) are IF mode 
quantum numbers, and P™ are associated Legendre poly- 
nomials of the first kind. From Eq. (2) it can be seen that 
the electrostatic potential is continuous and finite every- 
where and tends to zero far away from the dot (r »R). 

By imposing the continuity of the normal component 
of D at the dot boundary r=R, the following eigenfre- 
quency condition is obtained: 

CJ z 
tu 
3 o a 
et u. 

e1(a)iF)/e2(<i)iF)= — 1 — 1 // (3) 

FIG. 1. Interface frequencies for the mode / — 1 of a spheri- 
cal GaAs/AlxGa,_xAs quantum dot as a function of the Al al- 
loy concentration in the barrier material. The lines are a guide 
for the eyes. 

value for x>0.6. This behavior is similar for all IF 
modes investigated here (/ = 1, 2, and 3). Although colF { 

varies very slowly with the barrier material composition, 
this dependence can have important consequences on the 
resonant optical-absorption properties as will be dis- 
cussed later. 

Conversely, we obtain a much stronger dependence of 
the frequency colF1 with the Al mole fraction x. First, 
the frequency <uIF 2 tends to decrease slightly for x values 
lesser than 0.4, but it increases steeply in the range 
0A<x <0.6. For x >0.6, the eolF2 value increases very 
slightly. This striking behavior is independent of the IF 

By substituting the standard expressions for E] and e2, 
one obtains a biquadratic equation in the frequency vari- 
able which gives two physical solutions for the IF fre- 
quency. These values depend only on the integer /, and 
they are independent of the integer m, asa consequence 
of the system symmetry. As the transversal-optical (TO) 
and LO branches of the dot and barrier materials (GaAs 
and AlxGa,_xAs) are almost dispersionless, it is reason- 
able to assume that coTQi and coLOi (/ = 1,2) are nearly 
wave-vector independent and take the values that these 
parameters have for wave vectors equal to zero. This re- 
sults in two dispersionless IF mode branches; the values 
for E,if> <uLOl, 

and ^TO.I U = l,2) used to evaluate Eq. 
(3) are taken from Ref. 26. One of the IF mode frequen- 
cies CJ1F , satisfies the relation a>To,i<<uiF,i<6>LO,i> an(^ 
the other, <olF2, satisfies 6>TO,2<<aiF,2<ü,LO,2 depending 
on the composition of the surrounding medium. This is a 
consequence of the fact that the dot and the barrier ma- 
terials have nonoverlapping reststrahl regions. 

Figures 1-3 show the IF mode frequencies <olFl and 
alF 2 as a function of x for the three first IF modes / = 1, 
2, and 3, respectively. The frequency a>IF1 tends to de- 
crease slightly with increasing x to get a nearly constant 

50 
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AlAs 

FIG. 2. Interface frequencies for the mode / =2 of a spheri- 
cal GaAs/AlxGa,_x As quantum dot as a function of the Al al- 
loy concentration in the barrier material. The lines are a guide 
for the eyes. 
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FIG. 3. Interface frequencies for the mode / =3 of a spheri- 
cal GaAs/AlxGai_^As quantum dot as a function of the Al al- 
loy concentration in the barrier material. The lines are a guide 
for the eyes. 

mode number / (/ = 1, 2, 3). The dependence of colF2 

with the Al mole fraction is completely reasonable be- 
cause for x <0.4, the barrier material is GaAs type and 
the IF mode frequency <uIF 2 must satisfy the relation coTO 

(GaAs) < o)IF 2 < (oLO (GaAs), whereas for JC>0.5, the 
barrier material is AlAs type and colF 2 must satisfy o)TO 

(AlAs) <o)IF2<coLO (AlAs). Therefore, the abrupt step 
observed in a>IF 2 should be interpreted as a result of the 
change in the barrier material composition. 

Figure 4 shows the IF mode frequencies coIF x and <uIF 2 

as functions of the IF mode / for GaAs/Alo 4Gao.6 As and 
GaAs/AlAs. The almost independence of a)jF ( and tolF 2 

on the IF mode / can be clearly seen from Fig. 4 and it 
has been discussed above. For the case of the IF mode 
/ =0, conservation of charge prohibits the existence of 
the dotlike mode and hence there exists only the barrier- 
like mode o)lF 2. This is the reason we are not interested 
in this mode and it will not be discussed herein. 

The electric fields generated by these two different IF 
modes a>lF , and a)lF2 are identical, but their polariza- 
tions P, = [ 1 - E, (a)) ]E/4ir (/' = l, 2) differ. The analytical 
expressions of these vectors for the mode / = 1 appear in 
Table I. The subscript 1 (2) denotes the dot (barrier) ma- 
terials whereas the superscript denotes the IF mode quan- 
tum number m. A distance dependencelike 1 /R for r < R 
and /J2/r3 for r>R is obtained. In general, for a given 
mode /, the polarization vector dependence with the dis- 
tance scales as r'~l/R'for r <R or Rl + 1/rl+z for r >R. 

Now, we consider the optical absorption due to the IF 
modes of quantum dots. We assume that the illuminating 
source wavelength is larger than the dot radius R; there- 
fore, retardation effects are not significant and the il- 
luminating source field may be considered as homogene- 
ous near the quantum dot. For the following discussion, 
we take the barrier material (AlxGa,_xAs) to be nonab- 
sorbing, which means that lme2(<u)=0. We are interest- 

> 
CJ z 
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FIG. 4. Interface frequencies as a function of the interface 
mode / for spherical GaAs/Alo.4680.^ and GaAs/AlAs quan- 
tum dots. The lines are a guide for the eyes. 

ed in the effect of the barrier composition on the IF pho- 
non frequency values. A variation of the IF frequencies 
as a result of a different composition in the surrounding 
medium could modify the position of the resonant 
optical-absorption peak if this variation is larger than the 
full width at half maximum (FWHM) of the peak. For a 

TABLE I. Polarization vectors of a spherical 
GaAs/AlxGa,_x As quantum dot for the mode / = 1. The sub- 
script 1 (2) denotes dot (barrier) materials and the superscript 
represents the interface quantum number m.  

Pr'^e^J-lJe-'^SirÄr'tu-cosW^ 

+sin0 cos0( 1 — cos2©)" l/2u8 

-«(sine)-|(l-cos20)1/2u^]. 

Pf, = [E2(a>)-l]e-'V(8irÄ3rl[-2(l-cos20)l/V 

+sinÖcos0( 1 - cos2e)~,nixe 

-i(sin0r'(l-cos20)l/2u,]. 

P?=[l-e,(ö»)](4irÄ)-1(coseur-sin0u9) . 

P§=[e,(ö)-l]Ä2(4irr3)-|(2cos0ul.+sinen9). 

Pi = [l-eI(6>)>'e(4irÄr1[(l-cos20)1/V 

+sin0 cosdi 1 - cos2er l/2n» 

+i(sin0rl(l-cos20)1/2u,]. 

Pi=[l-e2(6>)]eie*2(4OT3)-l[(l-cos20)1/2iir 

+sim9cos0( 1- cos20)~l/2u9 

+/(sin0)-|(l-cos20),/2u,]. 
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TABLE II. Effect of the surrounding medium composition 
on the interface dotlike frequencies of spherical 
GaAs/Alx Gai _;, As quantum dots. 

A* =0.2 
0.2-.-0.4 0.4-.-0.6 0.6—0.8 0.8-*1.0 

Aöjp,, 

1 = 1 0.56 meV 0.72 meV 0.01 meV 0.01 meV 
1=2 0.50 meV 0.68 meV 0.01 meV 0.02 meV 
1=3 0.46 meV 0.67 meV 0.01 meV 0.02 meV 

review of optical-absorption properties in quantum dots 
with different revolution geometries, see, for example, 
Ref. 12. A typical value for the FWHM in GaAs is 0.18 
meV;n therefore, a variation of the barrier composition 
that yields a change in the IF frequencies higher than this 
value would cause a shift of the resonant optical absorp- 
tion to another frequency. Table II shows the variation 
of IF dotlike frequencies for increments Ax =0.2 in the 
Al mole fraction of the surrounding material. Up to a 
value of x equal to 0.6, the variation of &>IF t causes 
significant shifts in the resonant peak; however, the same 
increase Ax for x > 0.6 does not cause any shift in the 
peak. As a consequence of the high symmetry of the dot 
only the three modes with 1 = 1 (m = — 1, m =0, and 
m = 1) make a nonzero contribution to the optical- 
absorption cross section and hence, these modes induce 
absorption. An analytical expression for the optical- 
absorption cross section has been given in Ref. 12. 

HI. CONCLUSION 

We have investigated the IF phonon modes of spheri- 
cal GaAs/AlxGa,_xAs quantum dots using the dielectric 

continuum approach with standard electrostatic bound- 
ary conditions. The dielectric continuum model is valid 
for phonon mode wavelengths larger than the lattice con- 
stant which is the region of greatest interest for the 
optical-absorption spectra. We have focused our interest 
on the IF phonon frequency dependences with the barrier 
alloy composition and its effect on the optical-absorption 
spectrum. For the case of spherical quantum dots, only 
the three modes with / = 1 (m = — 1, m =0, and m = 1) 
are optically active and they are degenerate by symmetry. 
This means that the obtained eigenfrequency condition 
has no dependence on the IF mode quantum number m. 
Therefore, their optical-absorption spectra are character- 
ized by a peak localized at the resonant frequency with 
the illuminating source. When the surrounding medium 
is GaAs type (x <0.6), we have found that for increases 
of Ax =0.2 in the percentage of Al, the dotlike resonant 
optical-absorption peak shifts to another frequency. 
However, when the surrounding medium is AlAs type 
(x >0.6), similar increases of AJC do not cause shifts of 
the resonant peak. Although we have assumed that the 
material surrounding the dot is nonabsorbing, a more 
general treatment of the problem would require to take 
into account the optical activity of the barrier medium 
and its effect on the resonant peak shift. 
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Abstract. Starting from a classical Hamiltonian for nonhomogeneous elastic media, a 
procedure is developed for acoustic phonon quantization in resonators as well as linear and 
planar waveguides. The formalism is illustrated in an example of acoustic phonon modes in 
a buried cylindrical waveguide. The deformation potential Hamiltonian for electron-acoustic 
phonon interaction is also obtained. 

1. Introduction 

During the last decade much effort has been devoted to understanding of influence of 
spatial quantization on the vibrational properties of semiconductor heterostructures and 
superlattices. While optical phonon confinement has been analysed in great detail [I], it is 
only recently that much attention has been focused on the more subtle effects of acoustic 
phonon quantization in restricted geometries. 

Early works on acoustic phonon properties in superlattices were devoted mainly to the 
study of acoustic mode folding [2]. More recently, Tamura and co-workers investigated the 
resonant transmission of acoustic wavepackets in superlattices and double-barrier systems 
[3]. Kochelap and Giilseren [4] have modelled the localization of acoustical modes due to 
electron-phonon interactions within a two-dimensional electron gas. Also, in a number of 
works the modification of acoustic modes in heterostructures has been studied [5-7] within 
the formalism of classical elasticity theory [8, 9]. 

Recent advances in material growth techniques have resulted in the fabrication of free- 
standing nanostructures [11] and have provided the possibility of observation of acoustic 
phonon confinement effects. Wybourne and co-workers [12] have presented experimental 
evidence of acoustic phonon confinement effects in self-supported thin films. Subsequently, 
these experimental findings motivated theoretical investigations on the role of acoustic 
phonon quantization in free-standing nanostructures [13-15]. Furthermore, acoustic phonon 
modes had been properly quantized in self-supported whiskers [13, 14], dots [13] and slabs 
[15], and electron-phonon interactions in such systems have been studied. 

To the best of our knowledge, the quantum mechanical treatment of acoustic phonons 
has been provided only for free-boundary, homogeneous waveguides and resonators. On 
the other hand, semiconductor quantum wells, wires and dots are conventionally grown 
embedded in another material. It has been also proposed [7] that a buried quantum wire 
could serve as an acoustic fibre in semiconductor acoustoelectronic devices. Thus, proper 
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quantization of acoustic phonon modes in buried structures is essential for an accurate 
treatment of mesoscopic and coherent phenomena in low-dimensional systems. 

In this paper we develop a quantization procedure for acoustic vibrations confined in 
linear or planar waveguides as well as resonators. Expressions for the displacement operator 
are derived starting from the most general form of the Hamiltonian for an inhomogeneous 
elastic medium. The quantization formalism is illustrated by deriving the acoustic phonon 
spectrum for a buried cylindrical wire. We also present the resulting deformation potential 
Hamiltonian responsible for the electron-phonon interaction. 

This paper is organized as follows. In section 2 we obtain general rules for acoustic 
phonon quantization in resonators and waveguides. Section 3 deals with application of 
the quantization procedure to a buried cylindrical fibre. Finally, we summarize the results 
obtained in section 4. 

2. Quantization procedure 

In section 2.1 we present the procedure for acoustic phonon quantization in resonators; 
section 2.2 contains the rule for quantization of phonons confined in one or two dimensions 
(acoustic waveguide), and section 2.3 presents the deformation potential Hamiltonian for 
acoustic phonons. 

2.1. Acoustic phonon quantization in resonators 

We consider the quantization of acoustic modes localized in a certain region of elastic 
material (resonator). The most general form of the Hamiltonian for an inhomogeneous 
elastic medium is given by [9, 10] 

n = \ f#R [p^M, + KMR) g j£\ (i) 

where «, are components of the displacement vector u(R, t); also p(R) is a mass density, 
and kijk,(R) is the elastic stiffness tensor of the medium. 

The corresponding equations of motion take the following form: 

p(R)u,(R, t) = ± [x,MK> d-^^] ■ (2) 

The general solution of equation (2) in the case of localized vibrations can be presented 
as a linear combination of normal modes wn(R) which are labelled by a discrete number 
n. For the quantization of the elastic vibrations it is convenient to deal with a real (rather 
than complex) displacement vector u(R, /); thus, 

u(R, 0 = £ [cnWn(R) e-"""' + c>;(Ä) e^"']. (3) 

In order to define unambiguously the coefficients cn and c* in equation (3), the 
normalization rule for the modes wn(R,t) should be specified. Since the requirement of 
constant energy for confined vibrations implies their mutual orthogonality with the density 
p(R) as a weight factor [10], the following orthonormality conditions can be imposed: 

ftfR p(R)w'n(R) • wAR) = <W- (4) 

In order to obtain the quantization rules the Hamiltonian (1) must be expressed in 
terms of the amplitudes of the modes, c„ and c*. Integrating by parts the second term in 
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equation (1), we find, with the help of equations (2)-{4), the following representation of the 
Hamiltonian: 

H = J^ajn(cnc* + c'ncn). (5) 
n 

^   The classical form (5) for elastic vibrations corresponds to the free-phonon Hamiltonian 
H in the second-quantization representation 

H = £>„ [MO*J(0 + I] = £ h~Y [bn(t)bl(t) + bl(t)bn(t)] (6) 

where the time-dependent annihilation and creation operators satisfy standard commutation 
relations: 

bn(t)bUt)-bUt)bn(t) = 8nM,. 

In essence, the quantization procedure amounts to (see, e.g., [16]) comparison of 
the classical Hamiltonian of equation (5) with the quantum mechanical Hamiltonian of 
equation (6). This comparison leads to the correspondence rule 

Finally, applying the rule (7) to the classical displacement vector in resonators given 
by equation (3), we find, in second-quantization representation, 

u(Ä, t) = E fc [w"(R^n + w:(R)bl] . (8) 

For simplicity we have suppressed the time dependence of the operators b(t) and t>Ht). The 
phonon wavefunctions wn(R) are normalized according to equation (4). 

2.2. Phonon quantization in acoustic waveguides 

The quantization rules for acoustic waveguides are easily obtained from comparison of 
equations (8), (4) for phonons confined in all dimensions with corresponding expressions, 
describing the homogeneous case [16]. Introducing the notation R = (r, z) and Q = 
(q, qz), we consider (i) planar waveguides homogeneous in the plane with constant z and 
(ii) linear waveguides which are homogeneous along the z-direction. 

Thus, for linear acoustic waveguides, the operator for the displacement vector is given 
by 

Here £ is a normalization length; the phonon frequency ojnqz and eigenvectors wn(/i(r) 
should be found by solving of the equations of motion (2) with proper boundary condition. 
The normalization condition for the eigenvectors is 

j d2r p(r)w*qz(r) • to,,.,,(r) = *„.„.. (10) 

In the same fashion, for a planar waveguide the displacement operator is equal to 
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where 5 is a normalization area and the eigenvectors wnq(z) must be normalized according 
to the prescription 

fdz P(z)w*nq{z) • wn..q(z) = Sn,n, (12) 

2.3. The deformation potential 

Interaction via the deformation potential is usually a dominant mechanism for electron- 
acoustic phonon scattering in crystals. The deformation potential Hamiltonian can be written 
in a general form as 

Hdef = 3ac div u(Ä, t) (13) 

where 2ac is an acoustic deformation potential constant, and an implicit form of the 
displacement operator lit is given by equations (8), (9), or (11). 

3. The cylindrical waveguide 

To illustrate the application of the acoustic phonon quantization procedure described in 
the previous section, we consider the example of a linear cylindrical waveguide in an 
isotropic medium. Section 3.1 provides the general solution for quantized acoustic modes 
in this system; in section 3.2, we investigate the particular case of axisymmetric modes in 
more detail. Section 3.3 contains the expression for the quantized deformational potential 
Hamiltonian. 

3.1. Basic equations 

We consider a buried cylindrical waveguide of radius a occupying the region r < a. The 
inner (outer) region of the waveguide is filled with an isotropic medium characterized 
by constant mass density p\ (/02) and Lam6 coefficients A.i, ^1 (*2> M2) which specify 
the elastic stiffness tensor of each isotropic medium in equation (1) according to A.,;*/ = 
XSijSki +2n8jk8jt. 

The general solution of the classical equations of motion (2) in each region can be 
written [9] in terms of three scalar potentials </>, V and x- 

u = V(j> + V x (e^)+aV x V x (e2x). (14) 

Here ez is a unit vector along the z-axis. Each potential (f> (i/r, x) satisfies a scalar wave 
equation with propagation speed equal to the longitudinal (transverse) sound speed si (s,) 
given by 

siv = J(kv + 2ßv)/pv s,v = vVv/Pv- 

In these expressions, u = 1 (v = 2) corresponds to the material constant of the inner (outer) 
region. 

We seek the solutions of equation (2) as harmonic vibrations with frequency o>, 
wavevector qz = q/a, and azimuthal number m, confined in the vicinity of the waveguide. 
Using the cylindrical coordinate system, R = (r, <p, z), we take the scalar potentials in the 
inner region (r < a) as 

~ icnJm(kir/a) ' <t>' 1 
* a L x J 

C,iJm{k,r/a) 
c,\Jm{k,rla) 

\mtp+iqzla-\ut (15) 
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and for the outer region (r > a) 

L X J 

icnKmiicir/a) 
C,iKm{K,r/a) 
ctiKm{Ktr j a) 

Qm<p+iqz/u-i(ot 

2147 

(16) 

SedLinVCISe WaVdengthS *'•' "* localization length *,., in the radial direction are 

kl=q2-w^/sl t2   =,..2/,2i *ff.oi *u = t»a2/sQJ)2 ~ q1- 

For definiteness, equations (15) and (16) are written under the assumption that k}„K} > 0 
which corresponds to the case of confined acoustic vibrations. Other possible cases are 
treated formally in the same fashion using analytical properties of Bessel's functions and 
are discussed in the appendix. 

Substituting equations (15) and (16) into equation (14), we find the implicit form of the 
displacement vector: 

(17) 

(18) 

U(r, <P, Z, t) = U{r)t
mV+^l/a-\ü>t 

where inside the waveguide (r < a) 

-iur(r) = cnk,J^(k,r/a) + CtlmjJm(k,r/a) + cnqk,J'm{ktr/a) 

-«„CO = cnrn°Jm(klr/a) + Ctlk,J^k,r/a)+cllmq°Jm(klr/a) 

-uz(r) = cnqjm(k,r/a) - cnk2Jm(ktr/a) 

while for r > a we have 

-i«r(r) = c,2K,K'm(K,r/a) + Ct2m^Km(K,r/a) + cl2qK,K'm(ic,r/a) 

-uv(r) = cl2mjKm(K,r/a) + Cl2K,K'm(K,r/a) + cl2mq-Km{Ktr/a)      (19) 

-uz(r) = c,2qKm(K,r/a) + cl2K2Km(,K,r/a). 

Applying standard boundary conditions (continuity of the displacement and normal 
components of the stress tensor at the boundary r = a) gives the following 6x6 characteristic 
equation for the acoustic vibrations of a buried cylindrical fibre: 

L M.F,    -ß2F2 J [ c\ J=0 
(20) 

where Cv — [ctv, Ctv, c,v]T; displacement matrices at r = a are given by 

Lv      mtv       qTv 

Uu = —mlu    —Tv    —mqtv 

k2t 

(21) 

L  -qlv       0 

and matrices F„, related to the elastic forces at the interface, are equal to 

_2<?L" -mqtv (k2
vt - q2)Tv 

F = 2m(lv-Lv) (kl,-2m2)tv + 2Tu 2mq(tv-Tu) 

L (2m2 + q2 - k2
vl)lv - 2LV 2m(Tv - tv) 2q[(m2 - jfc*)tv - Tv] _ 

(22) 
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Here *?(/.,) = klr *!</.»> = -*/2i- and 

/i = ./«(*/) L, = k,J^(kt)        r, = ym(jfc,) r, = *,/;(*,) 

h = Km(K,) L2 = K,K'm{Ki) t2 = Km(Kt) T2 = K,K'm(Kt). 

Equations (20H22) define the dispersion law and eigenmodes of elastic vibrations in a 
buried cylindrical waveguide for arbitrary azimuthal number m. 

Finally, taking into account the notation introduced above, we can rewrite equation (9) 
for the displacement operator as 

[^m,.,(/-)^n., + <n._?(r)fcL.-Je"n^2/a. (23) 

Here, the discrete quantum number n enumerates phonon modes with the same m and q, 
and the normal modes w can be represented conveniently in the following form: 

Wmn.q (r) m wmn,q (r)e'm^ = u(r)eim,7VjraW (24) 

where the normalization constant Af must be determined from the condition of equation 
(10). 

Below we consider in detail the important case of axisymmetric (m = 0) vibrations in 
a cylindrical waveguide. 

3.2. Axisymmetric vibrations 

In case of axisymmetric vibrations, m = 0, the 6 x 6 determinant corresponding to equation 
(20) decouples into 2 x 2 and 6 x 6 blocks, specifying axisymmetric torsional and radial- 
axial modes. Below we present the expressions for these two types of axisymmetric normal 
modes wq(r), which appear in equation (9) for the displacement operator of a cylindrical 
waveguide. 

3.2.1. Torsional modes. According to equations (18)-(22), the dispersion relation for the 
torsional vibrations is specified by the following transcendental equation: 

/*i*f72(*f)M(*i) = ß2K,K2(ic,)/Kl(Kt) (25) 

while the envelope function is given by wr = wz = 0 and 

=        1        I K\{.Kt)J\{k,r/a) r < a 
Wv      y/^aW^lJdk^KdK.r/a) r > a. (26) 

Here Mv is the dimensionless normalization constant. Using the notation that Jm(t t) = 
Jm(kLt) and Km{Lt) = K„(KU), we find from the normalization condition (10) 

K = P\KlUl - JcJi,) + nJfcKo.K* - K2
U). (27) 

3.2.2. Radial-axial modes. For radial-axial axisymmetric vibrations the normal modes are 
given by w^ = 0 and 

iwr = 
1 [ cnkiJ\{k.ir/a) + cnqk,J\(k,r/a) r <a 

^7ta2Mrz I Ci2KiK\(Kir/a) + ct2qK,K\{K,r/a) 

1 f cnqMkir/a) - ctikfj0(k,r/a) 

yJna2Nri \ ci2qK0(Kir/a) + cl2KfK0(K,r/a) 

(28) 
r > a 

r < a 
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The dispersion relation and the relationship between coefficients cvl, cvl are specified 
by the following eigenequation (cf. equations (20M22)): 

-k,Ju -qk,Ju <c,Ku qKiKu 

K2K0, kfJo, qKoi -qJoi 

2fiiqk,Ju ix2k,(q2 - kj)Ju -2ß2qiciKu -IWC.tf+ ql)*u 

_ m[AJoi+2k,Ju)   IpnqkAJu-k.h,}    -ß2[BKa+2K,Ku]    -IMKAJU+KM J 

= 0. (30) 

cu 

C\i 

CIS    J 

where A = q2 - kf and B=q2 + KJ- .          
The normalization constant Nrz in equations (28) and (29) may be determined from the 

condition (10). After some calculations, we find 

Ki = pM,[q2(Joi + Ju) + kHJu ~ Jo,j2,)] 

+c2,kJ[k2{J2 + Jl) + q\Jl ~ htJi,)\ ~ 4c,/c„ qk,JaJu) 
+Pi{c\1\q

1{K2
l - Kfo+KfiKuKv - K2,)] 

+CIK?[K?{KI - K2,) + q2(K0,K2l - K2,)] - teucqK,KaKu\ 

where the notation used for Jm{U) and Km{U) was introduced in section 3.2.1. 

3.3. The deformation potential interaction 

Substituting equations (23), (24), (15), and (16) into equation (13), and taking into account 

that V2</> = -(üJ/SI)
2

4>, we find 

„    x^(umn.q\
2   I n \*      u       +<D*       b1      1 eimf+i"z/a    (31) 

*« = -Sac  £ {-^)   yj^^JTC [*--••*-•■• + *--.*»-J 

where the scalar potential <t> is given by 

_\icnJm(k,r/a) r<a (32) 

<*mnq " [ icnKm(K,r/a) r > a. 

As expected, only the longitudinal component of the vibration contributes to a deformation 

potential interaction. 

4. Summary 

In this paper we obtained the quantization rules for acoustic vibrations confined in one 
two or all spatial dimensions and presented a general form of the deformation potential 
Hamiltoman in a second-quantization representation. It should be noted that the ?>«"*"» 
rules do not change the dispersion relations and displacement pattern of the classical acoustic 
waves in the waveguides.    However, the procedure of second quantization performed 
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specifies uniquely the normalization constants for phonon fields and provides the operator 
representation for phonon variables. The formalism makes possible the consideration of 
processes with numbers of phonons of the order of one, and should be applied for analysis 
of electron-phonon interaction in mesoscopic devices. 

As a specific example we considered the quantization of acoustic phonon modes in a 
buriedI cylindrical waveguide. The expressions obtained may be used for analysis of electron 
and phonon dynamics in buried quantum wires. 
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Appendix 

All three scalar potentials in equation (15) for the inner region, r < a, are written in 
terms of Bessel s functions Jm, which describe real vibrations involving the whole cross- 
seaion of the waveguide, provided that **, > 0 (i.e. co < s(Unaz). In the opposite case, 
where a, > suqz, the functions Jm should be replaced by the modified Bessel functions Im 
according to the identity m 

Jm{-Az\) = \mIm{\z\). (Al) 
This situation corresponds to (interface) evanescent vibrations, exponentially decreasing 
toward the centre of the waveguide. 

As for the outer region, r > a, it is characterized by the evanescent solutions (16) 
in terms of MacDonald's functions Km. Vibrations are confined in the vicinity of the 
waveguide provided that co < st2qz < sl2qz. The opposite case of co > s,qz can be treated 
formally through the substitution 

*»(-i|z|) = -i"+,Ä«>(|Z|). (A2) 

Here the Hankel function describes the radiation of acoustic energy from the system, which 
is characterized by a complex frequency spectrum. 
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